Skip to main content

Bladder Cancer

  • Chapter
  • First Online:
Urologic Surgery in the Digital Era

Abstract

Nowadays, scientific investigation in bladder cancer research is focused on finding a patient-tailored diagnostic and therapeutic approach.

Over the past 10 years, innovations in technologies have led to a better characterization of bladder cancer, deepening our understanding of its pathogenesis and improving diagnostic and treatment strategies.

New technologies allow to reduce the need of invasive diagnostic procedures and, consequently, to reduce morbidity. Similarly, new treatment strategies that allow developing patient’s-tailored therapies have been proposed in the last years. Thanks to this new high-tech approach to the disease, the prognosis of bladder cancer has notably improved and is set to improve further.

This chapter tries to investigate and present the new advances in technology in the field of bladder cancer’s diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stamatiou K, Papadoliopoulos I, Dahanis S, Zafiropoulos G, Polizois K. The accuracy of ultrasonography in the diagnosis of superficial bladder tumors in patients presenting with hematuria. Ann Saudi Med. 2009;29:134–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Palou J, Granados EA, de la Torre P, Vicente J. Evaluation of tumor staging using echography in bladder tumors. Actas Urol Esp. 1991;15(6):544–7.

    CAS  PubMed  Google Scholar 

  3. Lughezzani G, Saita A, Lazzeri M, et al. Comparison of the diagnostic accuracy of micro-ultrasound and magnetic resonance imaging/ultrasound fusion targeted biopsies for the diagnosis of clinically significant prostate cancer. Eur Urol Oncol. 2019;2(3):329–32.

    Article  PubMed  Google Scholar 

  4. Saita A, Lughezzani G, Buffi NA, et al. Assessing feasibility and accuracy of high resolution microultrasound imaging for baldder cancer detection and staging. Eur Urol. 2019;77(6):727–32.

    Article  PubMed  Google Scholar 

  5. Lee M, Shin SJ, Oh YT, et al. Non-contrast magnetic resonance imaging for bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur Urol. 2017;72:544–54.

    Article  Google Scholar 

  6. Huang, L., Kong Q, Liu Z et al The diagnostic value of MR imaging in differentiating T staging of bladder cancer: a meta-analysis radiology, 2018. 286: 502.

    Google Scholar 

  7. Panebianco V, Narumi Y, Altun E, et al. Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (Vesical reporting Imaging and Data System). Eur Urol. 2018;74:294–306.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schwaibold HE, Sivalingam S, May F, et al. The value of a second transurethral resection for T1 bladder cancer. BJU Int. 2006;97:1199–201.

    Article  PubMed  Google Scholar 

  9. Daniltchenko DI, Riedl CR, Sachs MD, et al. Long-term benefit of 5-aminolevulinic acid fluorescence assisted transurethral resection of superficial bladder cancer: 5-year results of a prospective randomized study. J Urol. 2005;174:2129–33.

    Article  CAS  PubMed  Google Scholar 

  10. Moat G, N’Dow J, Vale L, et al. Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: systematic review and meta-analysis. Int J Technol Assess Health Care. 2011;27:3–10.

    Article  Google Scholar 

  11. Chen C, Huang H, Zhao Y, et al. Diagnostic performance of image technique based transurethral resection for non-muscle invasive bladder cancer: systematic review and diagnostic metaanalysis. BMJ Open. 2019;9:e028173.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bryan RT, Shah ZH, Collins SI, et al. Narrow-band imaging flexible cystoscopy: a new user’s experience. J Endourol. 2010;24:1339–43.

    Article  PubMed  Google Scholar 

  13. Kim SB, Yoon SG, Tae J, et al. Detection and recurrence rate of transurethral resection of bladder tumors by narrow-band imaging: prospective, randomized comparison with white light cystoscopy. Investig Clin Urol. 2018;59(2):98–105.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Drejer D, Béji S, Oezeke R, et al. Comparison of white light, photodynamic diagnosis and narrow band imaging in detection of carcinoma in situ or flat dysplasia in transurethral resection of the bladder: the DaBlaCa-8 study. Urology. 2017;102:138–42.

    Article  PubMed  Google Scholar 

  15. Dalgaard LP, Zare R, Gaya JM, et al. Prospective evaluation of the performances of narrow-band imaging flexible videoscopy relative to white-light imaging flexible videoscopy, in patients scheduled for transurethral resection of a primary NMIBC. World J Urol. 2019;37(8):1615–21.

    Article  CAS  PubMed  Google Scholar 

  16. Emiliani E, Talso M, Baghdadi M, et al. Evaluation of the spies TM modalities image quality. Int Braz J Urol Off J Braz Soc Urol. 2017;43(3):476–80.

    Article  Google Scholar 

  17. Bus MT, de Bruin DM, Faber DJ, et al. Optical diagnostics for upper urinary tract urothelial cancer: technology, thresholds, and clinical applications. J Endourol. 2015;29:113–23.

    Article  PubMed  Google Scholar 

  18. Pearace S, Daneshmand S. Enhanced endoscopy in bladder cancer. Curr Urol Rep. 2018;19:84.

    Article  Google Scholar 

  19. Schmidbauer J, Remzi M, Klatte T, et al. Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder. Euro Urol. 2009;56(6):914–9.

    Article  Google Scholar 

  20. Lerner SP, Goh A. Novel endoscopic diagnosis for bladder cancer. Cancer. 2015;121(2):169–78.

    Article  PubMed  Google Scholar 

  21. Sonn GA, Mach KE, Jensen K, et al. Fibered confocal microscopy of bladder tumors: an ex vivo study. J Endourol. 2009;23:197–201.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sonn GA, Jones S-NE, Tarin TV, et al. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J Urol. 2009;182:1299–305.

    Article  PubMed  Google Scholar 

  23. Liem EI, Freund JE, Baard J, de Bruin DM, Laguna Pes MP, SavciHeijink CD, et al. Confocal laser endomicroscopy for the diagnosis of urothelial carcinoma in the bladder and the upper urinary tract: protocols for two prospective explorative studies. JMIR Res Protoc. 2018;7(2):e34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hongwei S, Haitao J, Tao T, et al. Hope and challange: precision medicine in bladder cancer. Cancer Med. 2019;8:1806–16.

    Article  Google Scholar 

  25. Abrol S, Jairath A, Ganpule S, et al. Can CT virtual cystoscopy replace conventional cystoscopy in early detection of bladder cancer? Adv Urol. 2015;2015:926590.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yadav R, Kumar R. Virtual versus real cystoscopy. Indian J Urol. 2007;23(1):85–6.

    PubMed  PubMed Central  Google Scholar 

  27. Kim JK, Ahn JH, Park T, et al. Virtual cystoscopy of the contrast material-filled bladder in patients with gross hematuria. Am J Roentgenol. 2002;179(3):763–8.

    Article  Google Scholar 

  28. Quaia E. Microbubble ultrasound contrast agents: an update. Eur Radiol. 2007;17:1995–2008.

    Article  PubMed  Google Scholar 

  29. Nicolau C, Bunesch L, Peri L, et al. Accuracy of contrast-enhanced ultrasound in the detection of bladder cáncer. Br J Radiol. 2011;84:1091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huynh E, Jf L, Helfield BL, et al. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc. 2012;134:16464–7.

    Article  CAS  PubMed  Google Scholar 

  31. Di Z, Ziqui W, Lu W, et al. High-performance identification of human bladder cancer using a signal sel-amplifiable photoacoustica nanoprobe. ACS Appl Mater Interfaces. 2018;10:28331–9.

    Article  Google Scholar 

  32. Ma J, Song Y, Tian X, et al. Survey on deep learning imaging for pulmonary medical imaging. Front Med. 2019;14(4):450–69. https://doi.org/10.1007/s11684-019-0726-4.

    Article  PubMed  Google Scholar 

  33. Shkolyar E, Jia X, Chang TC, et al. Augmented bladder tumor detection using deep learning. Euro Urol. 2019;76:714–8.

    Article  Google Scholar 

  34. Ikeda A, Nosato H, Kochi Y, et al. Support system of cystoscopic diagnosis for bladder cancer based on artificial intelligence. J Endourol. 2020;34(3):352–8. https://doi.org/10.1089/end.2019.0509.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jung JH, Gudeloglu A, Kiziloz H, et al. Intravesical electromotive drug administration for nonmuscle invasive bladder cancer. Cochrane Database Syst Rev. 2017;9:CD011864.

    PubMed  Google Scholar 

  36. Soria F, Milla P, Fiorito C, et al. Efficacy and safety of a new device for intravesical thermochemotherapy in nongrade 3 BCG recurrent NMIBC: a phase I-II study. World J Urol. 2016;34:189–95.

    Article  PubMed  Google Scholar 

  37. Coenen JJMJH, van Valenberg FJP, Arends TJH, Witjes JA. Chemohyperthermia using MMC in nonmuscle-invasive bladder cancer: current status and future perspectives. Arch Esp Urol. 2018;71:400–8.

    PubMed  Google Scholar 

  38. León-Mata J, Domínguez JL, Redorta JP, et al. Analysis of tolerance and security of chemo hyperthermia with Mitomycin C for the treatment of nonmuscle invasive bladder cancer. Arch Esp Urol. 2018;71:426–37.

    PubMed  Google Scholar 

  39. Tan WS, Panchal A, Buckley L, et al. Radiofrequency-induced thermochemotherapy effect versus a second course of Bacillus Calmette-Guerin or institutional standard in patients with recurrence of nonmuscle-invasive bladder cancer following induction or maintenance Bacillus Calmette-Guerin Therapy (HYMN): a phase III, open-label, randomised controlled trial. Eur Urol. 2019;75:63–7.

    Article  PubMed  Google Scholar 

  40. Apfelthaler C, Skoll K, Ciola R. A doxorubicin loaded colloidal delivery system for the intravesical therapy of nonmuscle invasive bladder cancer using wheat germ agglutinin as targeter. Eur J Pharm Biopharm. 2018;130:177–84.

    Article  CAS  PubMed  Google Scholar 

  41. Karavana SY, Şenyiğit ZA, Çalışkan Ç. Gemcitabine hydrochloride microspheres used for intravesical treatment of superficial bladder cancer: a comprehensive in vitro/ex vivo/in vivo evaluation. Drug Des Devel Ther. 2018;12:1959–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. GuhaSarkar S, More P, Banerjee R. Urothelium- adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery. J Control Release. 2017;245:147–56.

    Article  CAS  PubMed  Google Scholar 

  43. Hu B, Yan Y, Tong F. Lumbrokinase/paclitaxel nanoparticle complex: potential therapeutic applications in bladder cancer. Int J Nanomedicine. 2018;13:3625–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo H, Li F, Xu W, et al. Mucoadhesive cationic polypeptide nanogel with enhanced penetration for efficient intravesical chemotherapy of bladder cancer. Adv Sci (Weinh). 2018;5:1800004.

    Article  Google Scholar 

  45. Camargo JA, Passos GR, Ferrari KL, et al. Intravesical immunomodulatory imiquimod enhances Bacillus Calmette-Guerin downregulation of nonmuscleinvasive bladder cancer. Clin Genitourin Cancer. 2018;16:587–93.

    Article  Google Scholar 

  46. Laudano MA, Barlow LJ, Murphy AM, et al. Long-term clinical outcomes of a phase I trial of intravesical docetaxel in the management of nonmuscleinvasive bladder cancer refractory to standard intravesical therapy. Urology. 2010;75:134–7.

    Article  PubMed  Google Scholar 

  47. Packiam VT, Lamm DL, Barocas DA, et al. An open label, single arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG unresponsive non muscle invasive bladder cancer: interim results. Urol Oncol. 2018;36:440–7.

    Article  CAS  PubMed  Google Scholar 

  48. Shore ND, Boorjian Stephen A, et al. Intravesical rAd–IFNa/Syn3 for patients with high-grade, Bacillus Calmette-Guerin– refractory or relapsed non–muscle-invasive bladder cancer: a phase II randomized study. J Clin Oncol. 2017;35:3410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kowalski M, Jones N, Jewett MAS, et al. Treatment with intravesical Vicinium. Results in durable responses in patients with carcinoma in situ (CIS) previously treated with BCG. Paper presented at the 30th Congress of the Societe Internationale d’Urologie; November 1–5; Shanghai, China; 2009.

    Google Scholar 

  50. Kramer MW, Wolters M, Herrmann TRW. En bloc resection of bladder tumors: ready for prime time? Eur Urol. 2016;69:967–70.

    Article  PubMed  Google Scholar 

  51. Herrmanna TRW, Woltersa M, Kramerb MW. Transurethral en bloc resection of nonmuscle invasive bladder cancer: trend or hype. Curr Opin Urol. 2017;27(2):182–90.

    Article  Google Scholar 

  52. Kramer MW, Rassweiler JJ, Klein J, et al. En bloc resection of urothelium carcinoma of the bladder (EBRUC): a European multicenter study to compare safety, efficacy, and outcome of laser and electrical en bloc transurethral resection of bladder tumor. World J Urol. 2015;33(12):1937–43.

    Article  PubMed  Google Scholar 

  53. Hurle R, Lazzeri M, Colombo P, et al. EN bloc resection of nonmuscle invasive bladder cancer: a prospective single-center study. Urology. 2016;90:126–30.

    Article  PubMed  Google Scholar 

  54. Yang H, Lin J, Gao P, et al. Is the En bloc transurethral resection more effective than conventional transurethral resection for non-muscle-invasive bladder cancer? A systematic review and meta-analysis. Urol Int. 2020;7:1–8. https://doi.org/10.1159/000503734.

    Article  CAS  Google Scholar 

  55. Yang Y, Yang X, Liu C, Li J. Preliminary study on the application of en bloc resection combined with near-infrared molecular imaging technique in the diagnosis and treatment of bladder cáncer. World J Urol. 2020;38(12):3169–76. https://doi.org/10.1007/s00345-020-03143-w.

    Article  PubMed  Google Scholar 

  56. Cosentino M, Gaya JM, Breda A, et al. Alloplastic bladder substitution: are we making progress? Int Urol Nephrol. 2012;44:1295–303.

    Article  PubMed  Google Scholar 

  57. Atala A, Bauer SB, Soker S, Yoo JJ. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.

    Article  PubMed  Google Scholar 

  58. Shen J, Wu JF, Zhang J, et al. An animal model of bladder reconstruction by autologous peritoneum transplantation. Zhonghua Wai Ke Za Zhi. 2019;57(11):853–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pisano, F., Gaya, J.M., Rodriguez Faba, O., Breda, A., Palou, J. (2021). Bladder Cancer. In: Veneziano, D., Huri, E. (eds) Urologic Surgery in the Digital Era. Springer, Cham. https://doi.org/10.1007/978-3-030-63948-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63948-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63947-1

  • Online ISBN: 978-3-030-63948-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics