Skip to main content

Kidney Diseases: The Age of Molecular Markers

  • Chapter
  • First Online:
Translational Urinomics

Abstract

Kidney diseases are conditions that increase the morbidity and mortality of those afflicted. Diagnosis of these conditions is based on parameters such as the glomerular filtration rate (GFR), measurement of serum and urinary creatinine levels and equations derived from these measurements (Wasung, Chawla, Madero. Clin Chim Acta 438:350–357, 2015). However, serum creatinine as a marker for measuring renal dysfunction has its limitations since it is altered in several other physiological situations, such as in patients with muscle loss, after intense physical exercise or in people on a high protein diet (Riley, Powers, Welch. Res Q Exerc Sport 52(3):339–347, 1981; Juraschek, Appel, Anderson, Miller. Am J Kidney Dis 61(4):547–554, 2013). Besides the fact that serum creatinine is a marker that indicates glomerular damage, it is necessary the discovery of new biomarkers that reflect not only glomerular damage but also tubular impairment. Recent advances in Molecular Biology have led to the generation or identification of new biomarkers for kidney diseases such as: Acute Kidney Failure (AKI), chronic kidney disease (CKD), nephritis or nephrotic syndrome. There are recent markers that have been used to aid in diagnosis and have been shown to be more sensitive and specific than classical markers, such as neutrophil gelatinase associated lipocalin (NGAL) or kidney injury molecule-1 (KIM-1) (Wasung, Chawla, Madero. Clin Chim Acta 438:350–357, 2015; George, Gounden. Adv Clin Chem 88:91–119, 2019; Han, Bailly, Abichandani, Thadhani, Bonventre. Kidney Int 62(1):237–244, 2002; Fontanilla, Han. Expert Opin Med Diagn 5(2):161–173, 2011). However, early diagnostic biomarkers are still necessary to assist the intervention and monitor of the progression of these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wasung, M.E., Chawla, L.S., Madero, M.: Biomarkers of renal function, which and when? Clin. Chim. Acta. 438, 350–357 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. Riley, W.W., Powers, S.K., Welch, H.G.: The effect of two levels of muscular work on urinary creatinine excretion. Res. Q. Exerc. Sport. 52(3), 339–347 (1981)

    Article  PubMed  Google Scholar 

  3. Juraschek, S.P., Appel, L.J., Anderson, C.A., Miller, E.R.: Effect of a high-protein diet on kidney function in healthy adults: results from the OmniHeart trial. Am. J. Kidney Dis. 61(4), 547–554 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. George, J.A., Gounden, V.: Novel glomerular filtration markers. Adv. Clin. Chem. 88, 91–119 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Han, W.K., Bailly, V., Abichandani, R., Thadhani, R., Bonventre, J.V.: Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 62(1), 237–244 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. Fontanilla, J., Han, W.K.: Kidney injury molecule-1 as an early detection tool for acute kidney injury and other kidney diseases. Expert Opin Med Diagn. 5(2), 161–173 (2011)

    Article  PubMed  Google Scholar 

  7. Califf, R.M.: Biomarker definitions and their applications. Exp. Biol. Med. (Maywood). 243(3), 213–221 (2018)

    Article  CAS  Google Scholar 

  8. Sasseville, V.G., Mansfield, K.G., Brees, D.J.: Safety biomarkers in preclinical development: translational potential. Vet. Pathol. 51(1), 281–291 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. Aronson, J.K., Ferner, R.E.: Biomarkers – a general review. Curr Protoc Pharmacol. 76, 9.23.1–9.23.17 (2017)

    Google Scholar 

  10. Carr, D.F., Pirmohamed, M.: Biomarkers of adverse drug reactions. Exp. Biol. Med. (Maywood). 243(3), 291–299 (2018)

    Article  CAS  Google Scholar 

  11. Patel, S.R., Dressler, G.R.: BMP7 signaling in renal development and disease. Trends Mol. Med. 11(11), 512–518 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, L., Li, X.S., Zhou, L.Q.: Renal tumor biopsy technique. Chin. Med. J. 129(10), 1236–1240 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pantel, K., Alix-Panabières, C.: Liquid biopsy and minimal residual disease – latest advances and implications for cure. Nat. Rev. Clin. Oncol. 16(7), 409–424 (2019)

    Google Scholar 

  14. Delgado, P.O., Alves, B.C., Gehrke, F.S., Kuniyoshi, R.K., Wroclavski, M.L., Del Giglio, A., et al.: Characterization of cell-free circulating DNA in plasma in patients with prostate cancer. Tumour Biol. 34(2), 983–986 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. Jain, S., Lin, S.Y., Song, W., Su, Y.H.: Urine-based liquid biopsy for nonurological cancers. Genet. Test. Mol. Biomarkers. 23(4), 277–283 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thongboonkerd, V., Malasit, P.: Renal and urinary proteomics: current applications and challenges. Proteomics. 5(4), 1033–1042 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. Salvi, S., Casadio, V.: Urinary cell-free DNA: potential and applications. Methods Mol. Biol. 1909, 201–209 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. Burnham, P., Dadhania, D., Heyang, M., Chen, F., Westblade, L.F., Suthanthiran, M., et al.: Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract. Nat. Commun. 9(1), 2412 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Le Lann, A.D., Bret, L.C., Delverdier, M.E., Amardeilh, M.F., Alary, C., Fournié, G.J.: Urinary DNA as an indicator of nephrotoxicity caused by endotoxin and gentamicin in mice. Toxicology. 92(1–3), 1–10 (1994)

    Article  PubMed  Google Scholar 

  20. Szeto, C.C., Chow, K.M., Lai, K.B., Szeto, C.Y., Chan, R.W., Kwan, B.C., et al.: mRNA expression of target genes in the urinary sediment as a noninvasive prognostic indicator of CKD. Am. J. Kidney Dis. 47(4), 578–586 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Mengual, L., Lozano, J.J., Ingelmo-Torres, M., Izquierdo, L., Musquera, M., Ribal, M.J., et al.: Using gene expression from urine sediment to diagnose prostate cancer: development of a new multiplex mRNA urine test and validation of current biomarkers. BMC Cancer. 16, 76 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Coca, S.G., Yalavarthy, R., Concato, J., Parikh, C.R.: Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 73(9), 1008–1016 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. Vanmassenhove, J., Glorieux, G., Hoste, E., Dhondt, A., Vanholder, R., Van Biesen, W.: Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Crit. Care. 17(5), R234 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Khanna, R.: Clinical presentation & management of glomerular diseases: hematuria, nephritic & nephrotic syndrome. Mo Med. 108(1), 33–36 (2011)

    PubMed  PubMed Central  Google Scholar 

  25. Fogo, A.B.: Causes and pathogenesis of focal segmental glomerulosclerosis. Nat. Rev. Nephrol. 11(2), 76–87 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. Shimohata, H., Ohgi, K., Maruyama, H., Miyamoto, Y., Takayashu, M., Hirayama, K., et al.: A case of proliferative glomerulonephritis with monoclonal IgG deposits that showed predominantly membranous features. Case Rep Nephrol. 2017, 1027376 (2017)

    PubMed  PubMed Central  Google Scholar 

  27. Orr, P., Shank, B.C., Hickson, S., Cooke, J.: Clinical management of glomerular diseases. Nurs. Clin. North Am. 53(4), 551–567 (2018)

    Article  PubMed  Google Scholar 

  28. Stoycheff, N., Stevens, L.A., Schmid, C.H., Tighiouart, H., Lewis, J., Atkins, R.C., et al.: Nephrotic syndrome in diabetic kidney disease: an evaluation and update of the definition. Am. J. Kidney Dis. 54(5), 840–849 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Madaio, M.P., Harrington, J.T.: The diagnosis of glomerular diseases: acute glomerulonephritis and the nephrotic syndrome. Arch. Intern. Med. 161(1), 25–34 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Levey, A.S., de Jong, P.E., Coresh, J., El Nahas, M., Astor, B.C., Matsushita, K., et al.: The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int. 80(1), 17–28 (2011 July). https://doi.org/10.1038/ki.2010.483. Epub 2010. Dec 8

  31. Mason, P.D., Pusey, C.D.: Glomerulonephritis: diagnosis and treatment. BMJ. 309(6968), 1557–1563 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beck, L.H., Salant, D.J.: Glomerular and tubulointerstitial diseases. Prim. Care. 35(2), 265–296, vi (2008)

    Google Scholar 

  33. Ferretti, J.J., Stevens, D.L., Fischetti, V.A.: Basic Biology to Clinical Manifestations. 2016

    Google Scholar 

  34. Yu, F., Haas, M., Glassock, R., Zhao, M.H.: Redefining lupus nephritis: clinical implications of pathophysiologic subtypes. Nat. Rev. Nephrol. 13(8), 483–495 (2017)

    Article  PubMed  Google Scholar 

  35. Becker, C.G., Murphy, G.E.: The experimental induction of glomerulonephritis like that in man by infection with group A streptococci. J. Exp. Med. 127(1), 1–24 (1968)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanitakis, J., Thivolet, J.: Cyclosporine. An immunosuppressant affecting epithelial cell proliferation. Arch. Dermatol. 126(3), 369–375 (1990)

    Article  CAS  PubMed  Google Scholar 

  37. Lan, H.Y.: Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Curr. Opin. Nephrol. Hypertens. 12(1), 25–29 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Kirsztajn, G.M., Filho, N.S., Draibe, S.A., Netto, M.V., Thomé, F.S., Souza, E., et al.: Fast reading of the KDIGO 2012: guidelines for evaluation and management of chronic kidney disease in clinical practice. J. Bras. Nefrol. 36(1), 63–73 (2014)

    Article  PubMed  Google Scholar 

  39. Ronco, C., Rizo-Topete, L., Serrano-Soto, M., Kashani, K.: Pro: prevention of acute kidney injury: time for teamwork and new biomarkers. Nephrol. Dial. Transplant. 32(3), 408–413 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. Ronco, C., Bellomo, R., Kellum, J.A.: Acute kidney injury. Lancet. 394(10212), 1949–1964 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. Desanti De Oliveira, B., Xu, K., Shen, T.H., Callahan, M., Kiryluk, K., D’Agati, V.D., et al.: Molecular nephrology: types of acute tubular injury. Nat. Rev. Nephrol. 15(10), 599–612 (2019)

    Article  CAS  PubMed  Google Scholar 

  42. Rangaswamy, D., Sud, K.: Acute kidney injury and disease: long-term consequences and management. Nephrology (Carlton). 23(11), 969–980 (2018)

    Article  Google Scholar 

  43. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266

    Google Scholar 

  44. Section, I.: Measurement of renal function, when to refer and when to start dialysis. Nephrol. Dial. Transplant. 7, 7–15 (2002)

    Google Scholar 

  45. Klahr, S., Morrissey, J.: Progression of chronic renal disease. Am. J. Kidney Dis. 41(3 Suppl 1), S3–S7 (2003)

    Article  CAS  PubMed  Google Scholar 

  46. Levey, A.S., Coresh, J.: Chronic kidney disease. Lancet. 379(9811), 165–180 (2012)

    Article  PubMed  Google Scholar 

  47. Miller, W.G., Bachmann, L.M., Delanghe, J.R., Inker, L.A., Jones, G.R.D., Vassalotti, J.A.: Optimal use of biomarkers for chronic kidney disease. Clin. Chem. 65(8), 949–955 (2019)

    Article  PubMed  CAS  Google Scholar 

  48. Kent, S., Schlackow, I., Lozano-Kuhne, J., Reith, C., Emberson, J., Haynes, R., et al.: What is the impact of chronic kidney disease stage and cardiovascular disease on the annual cost of hospital care in moderate-to-severe kidney disease? BMC Nephrol. 16(65), 015–0054 (2015)

    Google Scholar 

  49. Woo, K.T., Wong, K.S., Chan, C.M.: Clinical trials of the past decade in the management of chronic kidney disease. Rev. Recent Clin. Trials. 4(3), 159–162 (2009)

    Article  CAS  PubMed  Google Scholar 

  50. Kujal, P., Vernerova, Z.: 5/6 nephrectomy as an experimental model of chronic renal failure and adaptation to reduced nephron number. Cesk. Fysiol. 57(4), 104–109 (2008)

    CAS  PubMed  Google Scholar 

  51. Taal, M.W., Zandi-Nejad, K., Weening, B., Shahsafaei, A., Kato, S., Lee, K.W., et al.: Proinflammatory gene expression and macrophage recruitment in the rat remnant kidney. Kidney Int. 58(4), 1664–1676 (2000)

    Article  CAS  PubMed  Google Scholar 

  52. Sasaki, M., Shikata, K., Okada, S., Miyamoto, S., Nishishita, S., Kataoka, H.U., et al.: The macrophage is a key factor in renal injuries caused by glomerular hyperfiltration. Acta Med Okayama. 65(2), 81–89 (2011)

    CAS  PubMed  Google Scholar 

  53. Remuzzi, A., Gagliardini, E., Sangalli, F., Bonomelli, M., Piccinelli, M., Benigni, A., et al.: ACE inhibition reduces glomerulosclerosis and regenerates glomerular tissue in a model of progressive renal disease. Kidney Int. 69(7), 1124–1130 (2006)

    Article  CAS  PubMed  Google Scholar 

  54. Yoshida, Y., Fogo, A., Glick, A.D., Ichikawa, I.: Biology of progression of chronic renal diseases. Keio J. Med. 36(4), 369–380 (1987)

    Article  CAS  PubMed  Google Scholar 

  55. Waldherr, R., Gretz, N.: Natural course of the development of histological lesions after 5/6 nephrectomy. Contrib. Nephrol. 60, 64–72 (1988)

    Article  CAS  PubMed  Google Scholar 

  56. Romero, C., Caballero, N., Herrero, M., Ruíz, R., Sadick, N.S., Trelles, M.A.: Effects of cellulite treatment with RF, IR light, mechanical massage and suction treating one buttock with the contralateral as a control. J. Cosmet. Laser Ther. 10(4), 193–201 (2008)

    Article  PubMed  Google Scholar 

  57. Romero-Aroca, P.: Targeting the pathophysiology of diabetic macular edema. Diabetes Care. 33(11), 2484–2485 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  58. Norris, K.C., Smoyer, K.E., Rolland, C., Van der Vaart, J., Grubb, E.B.: Albuminuria, serum creatinine, and estimated glomerular filtration rate as predictors of cardio-renal outcomes in patients with type 2 diabetes mellitus and kidney disease: a systematic literature review. BMC Nephrol. 19(1), 36 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Satirapoj, B.: Tubulointerstitial biomarkers for diabetic nephropathy. J. Diabetes Res. 2018, 2852398 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Karmin, O., Siow, Y.L.: Metabolic imbalance of homocysteine and hydrogen sulfide in kidney disease. Curr. Med. Chem. 25(3), 367–377 (2018)

    Article  CAS  PubMed  Google Scholar 

  61. Villeval’de, S.V., Gudgalis, N.I., Kobalava, Z.D.: Cistatin C as a novel marker of renal function impairement and cardiovascular risk. Kardiologiia. 50(6), 78–82 (2010)

    PubMed  Google Scholar 

  62. Żyłka, A., Dumnicka, P., Kuśnierz-Cabala, B., Gala-Błądzińska, A., Ceranowicz, P., Kucharz, J., et al.: Markers of glomerular and tubular damage in the early stage of kidney disease in type 2 diabetic patients. Mediat. Inflamm. 2018, 7659243 (2018)

    Article  CAS  Google Scholar 

  63. Kapoula, G.V., Kontou, P.I., Bagos, P.G.: Diagnostic accuracy of neutrophil gelatinase-associated Lipocalin for predicting early diabetic nephropathy in patients with type 1 and type 2 diabetes mellitus: a systematic review and meta-analysis. J Appl Lab Med. 4(1), 78–94 (2019)

    Article  PubMed  CAS  Google Scholar 

  64. Mayer, G., Heerspink, H.J., Aschauer, C., Heinzel, A., Heinze, G., Kainz, A., et al.: Systems biology-derived biomarkers to predict progression of renal function decline in type 2 diabetes. Diabetes Care. 40(3), 391–397 (2017)

    Article  CAS  PubMed  Google Scholar 

  65. Lai, Y.T., Cerquinho, R.G., Perez, M.M., Alves, B.D.C.A., Pereira, E.C., Azzalis, L.A., et al.: Determination of vitamin D in tears of healthy individuals by the electrochemiluminescence method. J. Clin. Lab. Anal. 33(4), e22830 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Luz, M.C., Perez, M.M., Azzalis, L.A., Sousa, L.V., Adami, F., Fonseca, F.L., et al.: Evaluation of MCT1, MCT4 and CD147 genes in peripheral blood cells of breast cancer patients and their potential use as diagnostic and prognostic markers. Int. J. Mol. Sci. 18(4) (2017)

    Google Scholar 

  67. Manzoni, C., Kia, D.A., Vandrovcova, J., Hardy, J., Wood, N.W., Lewis, P.A., et al.: Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19(2), 286–302 (2018)

    Article  CAS  PubMed  Google Scholar 

  68. Khamis, M.M., Adamko, D.J., El-Aneed, A.: Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev. 36(2), 115–134 (2017)

    Article  CAS  PubMed  Google Scholar 

  69. Schmidt, C.: Metabolomics takes its place as latest up-and-coming “omic” science. J. Natl. Cancer Inst. 96(10), 732–734 (2004)

    Article  PubMed  Google Scholar 

  70. Wishart, D.S., Jewison, T., Guo, A.C., Wilson, M., Knox, C., Liu, Y., et al.: HMDB 3.0--the human metabolome database in 2013. Nucleic Acids Res. 41(Database issue), D801–D807 (2013)

    CAS  PubMed  Google Scholar 

  71. Kumar, B.S., Chung, B.C., Kwon, O.S., Jung, B.H.: Discovery of common urinary biomarkers for hepatotoxicity induced by carbon tetrachloride, acetaminophen and methotrexate by mass spectrometry-based metabolomics. J. Appl. Toxicol. 32(7), 505–520 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. Rhee, E.P., Clish, C.B., Ghorbani, A., Larson, M.G., Elmariah, S., McCabe, E., et al.: A combined epidemiologic and metabolomic approach improves CKD prediction. J. Am. Soc. Nephrol. 24(8), 1330–1338 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sharma, K., Karl, B., Mathew, A.V., Gangoiti, J.A., Wassel, C.L., Saito, R., et al.: Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol. 24(11), 1901–1912 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vizcaíno, J.A., Csordas, A., Del-Toro, N., Dianes, J.A., Griss, J., Lavidas, I., et al.: 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44(22), 11033 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Siwy, J., Zürbig, P., Argiles, A., Beige, J., Haubitz, M., Jankowski, J., et al.: Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol. Dial. Transplant. 32(12), 2079–2089 (2017)

    CAS  PubMed  Google Scholar 

  76. Consortium, I.H.G.S.: Finishing the euchromatic sequence of the human genome. Nature. 431(7011), 931–945 (2004)

    Article  CAS  Google Scholar 

  77. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., et al.: GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22(9), 1760–1774 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buss, P.M.: Genomics and public health. Cad. Saude Publica. 18(3), 554–555 (2002)

    Article  PubMed  Google Scholar 

  79. Groopman, E.E., Rasouly, H.M., Gharavi, A.G.: Genomic medicine for kidney disease. Nat. Rev. Nephrol. 14(2), 83–104 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lecamwasam, A., Sexton-Oates, A., Carmody, J., Ekinci, E.I., Dwyer, K.M., Saffery, R.: DNA methylation profiling of genomic DNA isolated from urine in diabetic chronic kidney disease: a pilot study. PLoS One. 13(2), e0190280 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sadar, S., Kaspate, D., Vyawahare, N.: Protective effect of L-glutamine against diabetes-induced nephropathy in experimental animal: role of KIM-1, NGAL, TGF-β1, and collagen-1. Ren Fail. 38(9), 1483–1495 (2016)

    Article  CAS  PubMed  Google Scholar 

  82. Kaucsár, T., Godó, M., Révész, C., Kovács, M., Mócsai, A., Kiss, N., et al.: Urine/plasma neutrophil gelatinase associated lipocalin ratio is a sensitive and specific marker of subclinical acute kidney injury in mice. PLoS One. 11(1), e0148043 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Luk, C.C., Chow, K.M., Kwok, J.S., Kwan, B.C., Chan, M.H., Lai, K.B., et al.: Urinary biomarkers for the prediction of reversibility in acute-on-chronic renal failure. Dis. Markers. 34(3), 179–185 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hemmingsen, C., Staun, M., Lewin, E., Egfjord, M., Olgaard, K.: Calcium metabolic changes and calbindin-D in experimental hypertension. J. Hypertens. 12(8), 901–907 (1994)

    Article  CAS  PubMed  Google Scholar 

  85. Kumar, R., Schaefer, J., Grande, J.P., Roche, P.C.: Immunolocalization of calcitriol receptor, 24-hydroxylase cytochrome P-450, and calbindin D28k in human kidney. Am. J. Phys. 266(3 Pt 2), F477–F485 (1994)

    CAS  Google Scholar 

  86. Guha, M., Heier, A., Price, S., Bielenstein, M., Caccese, R.G., Heathcote, D.I., et al.: Assessment of biomarkers of drug-induced kidney injury in cynomolgus monkeys treated with a triple reuptake inhibitor. Toxicol. Sci. 120(2), 269–283 (2011)

    Article  CAS  PubMed  Google Scholar 

  87. Calero, M., Tokuda, T., Rostagno, A., Kumar, A., Zlokovic, B., Frangione, B., et al.: Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem. J. 344(Pt 2), 375–383 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wilson, M.R., Roeth, P.J., Easterbrook-Smith, S.B.: Clusterin enhances the formation of insoluble immune complexes. Biochem. Biophys. Res. Commun. 177(3), 985–990 (1991)

    Article  CAS  PubMed  Google Scholar 

  89. Viard, I., Wehrli, P., Jornot, L., Bullani, R., Vechietti, J.L., Schifferli, J.A., et al.: Clusterin gene expression mediates resistance to apoptotic cell death induced by heat shock and oxidative stress. J. Invest. Dermatol. 112(3), 290–296 (1999)

    Article  CAS  PubMed  Google Scholar 

  90. Leskov, K.S., Klokov, D.Y., Li, J., Kinsella, T.J., Boothman, D.A.: Synthesis and functional analyses of nuclear clusterin, a cell death protein. J. Biol. Chem. 278(13), 11590–11600 (2003)

    Article  CAS  PubMed  Google Scholar 

  91. Xu, X., Wu, Z., Zhou, Q., Zhang, Y., Wu, D.: The role of determining the levels of serum collagen type IV in diagnosing early diabetic nephropathy. Ren. Fail. 24(6), 747–753 (2002)

    Article  CAS  PubMed  Google Scholar 

  92. Perbal, B.: CCN proteins: multifunctional signalling regulators. Lancet. 363(9402), 62–64 (2004)

    Article  CAS  PubMed  Google Scholar 

  93. Mosa, O., Skitek, M., Jerin, A.: Validity of Klotho, CYR61 and YKL-40 as ideal predictive biomarkers for acute kidney injury: review study. Sao Paulo Med. J. 135(1), 57–65 (2017)

    Article  PubMed  Google Scholar 

  94. Sawai, K., Mukoyama, M., Mori, K., Kasahara, M., Koshikawa, M., Yokoi, H., et al.: Expression of CCN1 (CYR61) in developing, normal, and diseased human kidney. Am. J. Physiol. Renal Physiol. 293(4), F1363–F1372 (2007)

    Article  CAS  PubMed  Google Scholar 

  95. Lai, C.F., Lin, S.L., Chiang, W.C., Chen, Y.M., Wu, V.C., Young, G.H., et al.: Blockade of cysteine-rich protein 61 attenuates renal inflammation and fibrosis after ischemic kidney injury. Am. J. Physiol. Renal Physiol. 307(5), F581–F592 (2014)

    Article  CAS  PubMed  Google Scholar 

  96. Ulutas, O., Taskapan, M.C., Dogan, A., Baysal, T., Taskapan, H.: Vascular calcification is not related to serum fetuin-A and osteopontin levels in hemodialysis patients. Int. Urol. Nephrol. 50(1), 137–142 (2018)

    Article  CAS  PubMed  Google Scholar 

  97. Matsui, I., Hamano, T., Mikami, S., Inoue, K., Shimomura, A., Nagasawa, Y., et al.: Retention of fetuin-A in renal tubular lumen protects the kidney from nephrocalcinosis in rats. Am. J. Physiol. Renal Physiol. 304(6), F751–F760 (2013)

    Article  CAS  PubMed  Google Scholar 

  98. Westenfeld, R., Schäfer, C., Krüger, T., Haarmann, C., Schurgers, L.J., Reutelingsperger, C., et al.: Fetuin-A protects against atherosclerotic calcification in CKD. J. Am. Soc. Nephrol. 20(6), 1264–1274 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mehrsai, A., Guitynavard, F., Nikoobakht, M.R., Gooran, S., Ahmadi, A.: The relationship between serum and urinary Fetuin-A levels and kidney stone formation among kidney stone patients. Cent European J Urol. 70(4), 394–399 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Stejskal, D., Karpisek, M., Vrtal, R., Student, V., Solichova, P., Fiala, R., et al.: Urine fetuin-A values in relation to the presence of urolithiasis. BJU Int. 101(9), 1151–1154 (2008)

    Article  CAS  PubMed  Google Scholar 

  101. Andreucci, M., Faga, T., Pisani, A., Perticone, M., Michael, A.: The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur. J. Intern. Med. 39, 1–8 (2017)

    Article  CAS  PubMed  Google Scholar 

  102. Shirakabe, A., Kobayashi, N., Hata, N., Shinada, T., Tomita, K., Tsurumi, M., et al.: The serum heart-type fatty acid-binding protein (HFABP) levels can be used to detect the presence of acute kidney injury on admission in patients admitted to the non-surgical intensive care unit. BMC Cardiovasc. Disord. 16(1), 174 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kokot, M., Biolik, G., Ziaja, D., Fojt, T., Kędzierski, L., Antoniak, K., et al.: Assessment of subclinical acute kidney injury after abdominal aortic aneurysm surgery using novel markers: L-FABP and H-FABP. Nefrologia. 34(5), 628–636 (2014)

    PubMed  Google Scholar 

  104. Ozturk, N., Aksoy, H., Aksoy, Y., Yildirim, A., Akcay, F., Yanmaz, V.: The low levels of circulating hepatocyte growth factor in nephrolithiasis cases: independent from gene polymorphism. Urolithiasis. 43(5), 427–432 (2015)

    Article  CAS  PubMed  Google Scholar 

  105. Malatino, L.S., Cataliotti, A., Benedetto, F.A., Stancanelli, B., Bellanuova, I., Belluardo, P., et al.: Hepatocyte growth factor and left ventricular geometry in end-stage renal disease. Hypertension. 41(1), 88–92 (2003)

    Article  CAS  PubMed  Google Scholar 

  106. Cho, W.Y., Lim, S.Y., Yang, J.H., Oh, S.W., Kim, M.G., Jo, S.K.: Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 as biomarkers of patients with established acute kidney injury. Korean J. Intern. Med. (2019)

    Google Scholar 

  107. Parikh, C.R., Jani, A., Melnikov, V.Y., Faubel, S., Edelstein, C.L.: Urinary interleukin-18 is a marker of human acute tubular necrosis. Am. J. Kidney Dis. 43(3), 405–414 (2004)

    Article  CAS  PubMed  Google Scholar 

  108. Milas, O., Gadalean, F., Vlad, A., Dumitrascu, V., Velciov, S., Gluhovschi, C., et al.: Pro-inflammatory cytokines are associated with podocyte damage and proximal tubular dysfunction in the early stage of diabetic kidney disease in type 2 diabetes mellitus patients. J. Diabetes Complicat., 107479 (2019)

    Google Scholar 

  109. Ichimura, T., Asseldonk, E.J., Humphreys, B.D., Gunaratnam, L., Duffield, J.S., Bonventre, J.V.: Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest. 118(5), 1657–1668 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Han, W.K., Bailly, V., Abichandani, R., Thadhani, R., Bonventre, J.V.: Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 62(1), 237–244 (2002)

    Article  CAS  PubMed  Google Scholar 

  111. fibrosis, K.R.R.: KIM-1 expression links kidney injury with CKD in mice. Nat. Rev. Nephrol. 9(11), 627 (2013)

    Article  Google Scholar 

  112. Sabbisetti, V.S., Waikar, S.S., Antoine, D.J., Smiles, A., Wang, C., Ravisankar, A., et al.: Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 25(10), 2177–2186 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kamijo, A., Sugaya, T., Hikawa, A., Okada, M., Okumura, F., Yamanouchi, M., et al.: Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules. Am. J. Pathol. 165(4), 1243–1255 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yamamoto, T., Noiri, E., Ono, Y., Doi, K., Negishi, K., Kamijo, A., et al.: Renal L-type fatty acid--binding protein in acute ischemic injury. J. Am. Soc. Nephrol. 18(11), 2894–2902 (2007)

    Article  CAS  PubMed  Google Scholar 

  115. Xu, Y., Xie, Y., Shao, X., Ni, Z., Mou, S.: L-FABP: a novel biomarker of kidney disease. Clin. Chim. Acta. 445, 85–90 (2015)

    Article  CAS  PubMed  Google Scholar 

  116. Sheira, G., Noreldin, N., Tamer, A., Saad, M.: Urinary biomarker N-acetyl-β-D-glucosaminidase can predict severity of renal damage in diabetic nephropathy. J. Diabetes Metab. Disord. 14, 4 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bazzi, C., Petrini, C., Rizza, V., Arrigo, G., Napodano, P., Paparella, M., et al.: Urinary N-acetyl-beta-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol. Dial. Transplant. 17(11), 1890–1896 (2002)

    Article  CAS  PubMed  Google Scholar 

  118. Liangos, O., Perianayagam, M.C., Vaidya, V.S., Han, W.K., Wald, R., Tighiouart, H., et al.: Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J. Am. Soc. Nephrol. 18(3), 904–912 (2007)

    Article  CAS  PubMed  Google Scholar 

  119. Cirulli, V., Yebra, M.: Netrins: beyond the brain. Nat. Rev. Mol. Cell Biol. 8(4), 296–306 (2007)

    Article  CAS  PubMed  Google Scholar 

  120. Ramesh, G., Krawczeski, C.D., Woo, J.G., Wang, Y., Devarajan, P.: Urinary netrin-1 is an early predictive biomarker of acute kidney injury after cardiac surgery. Clin. J. Am. Soc. Nephrol. 5(3), 395–401 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jayakumar, C., Nauta, F.L., Bakker, S.J., Bilo, H., Gansevoort, R.T., Johnson, M.H., et al.: Netrin-1, a urinary proximal tubular injury marker, is elevated early in the time course of human diabetes. J. Nephrol. 27(2), 151–157 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Coles, M., Diercks, T., Muehlenweg, B., Bartsch, S., Zölzer, V., Tschesche, H., et al.: The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. J. Mol. Biol. 289(1), 139–157 (1999)

    Article  CAS  PubMed  Google Scholar 

  123. Holmes, M.A., Paulsene, W., Jide, X., Ratledge, C., Strong, R.K.: Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure. 13(1), 29–41 (2005)

    Article  CAS  PubMed  Google Scholar 

  124. Viau, A., El Karoui, K., Laouari, D., Burtin, M., Nguyen, C., Mori, K., et al.: Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J. Clin. Invest. 120(11), 4065–4076 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Koyner, J.L., Vaidya, V.S., Bennett, M.R., Ma, Q., Worcester, E., Akhter, S.A., et al.: Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin. J. Am. Soc. Nephrol. 5(12), 2154–2165 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lau, W.K., Blute, M.L., Weaver, A.L., Torres, V.E., Zincke, H.: Matched comparison of radical nephrectomy vs nephron-sparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney. Mayo Clin. Proc. 75(12), 1236–1242 (2000)

    Article  CAS  PubMed  Google Scholar 

  127. Fassett, R.G., Venuthurupalli, S.K., Gobe, G.C., Coombes, J.S., Cooper, M.A., Hoy, W.E.: Biomarkers in chronic kidney disease: a review. Kidney Int. 80(8), 806–821 (2011)

    Article  CAS  PubMed  Google Scholar 

  128. du Cheyron, D., Daubin, C., Poggioli, J., Ramakers, M., Houillier, P., Charbonneau, P., et al.: Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am. J. Kidney Dis. 42(3), 497–506 (2003)

    Article  PubMed  CAS  Google Scholar 

  129. Kaleta, B.: The role of osteopontin in kidney diseases. Inflamm. Res. 68(2), 93–102 (2019)

    Article  CAS  PubMed  Google Scholar 

  130. Kaleta, B., Krata, N., Zagożdżon, R., Mucha, K.: Osteopontin gene polymorphism and urinary OPN excretion in patients with immunoglobulin a nephropathy. Cell. 8(6) (2019)

    Google Scholar 

  131. Wasung, M.E., Chawla, L.S., Madero, M.: Biomarkers of renal function, which and when? Clin. Chim. Acta. 438, 350–357 (2015)

    Article  CAS  PubMed  Google Scholar 

  132. Cho, J.H., Ryu, H.M., Oh, E.J., Yook, J.M., Ahn, J.S., Jung, H.Y., et al.: Alpha1-antitrypsin attenuates renal fibrosis by inhibiting TGF-β1-induced epithelial mesenchymal transition. PLoS One. 11(9), e0162186 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Weber, M.H., Verwiebe, R.: Alpha 1-microglobulin (protein HC): features of a promising indicator of proximal tubular dysfunction. Eur. J. Clin. Chem. Clin. Biochem. 30(10), 683–691 (1992)

    CAS  PubMed  Google Scholar 

  134. Jotwani, V., Scherzer, R., Abraham, A., Estrella, M.M., Bennett, M., Cohen, M.H., et al.: Association of urine α1-microglobulin with kidney function decline and mortality in HIV-infected women. Clin. J. Am. Soc. Nephrol. 10(1), 63–73 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Veiga, G.L. et al. (2021). Kidney Diseases: The Age of Molecular Markers. In: Baptista Carreira dos Santos, H.M. (eds) Translational Urinomics. Advances in Experimental Medicine and Biology(), vol 1306. Springer, Cham. https://doi.org/10.1007/978-3-030-63908-2_2

Download citation

Publish with us

Policies and ethics