Skip to main content

Numerical Analysis of Nanowire Resonators for Ultra-high Resolution Mass Sensing in Biomedical Applications

  • Conference paper
  • First Online:
Recent Developments in Mathematical, Statistical and Computational Sciences (AMMCS 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 343))

Abstract

Nanowire resonators have fascinated researchers as a promising group of devices for accurate detection of tiny objects such as atoms, molecules, viruses, bacteria, and different types of bio-objects. In this paper, we present a numerical solution to the newly developed mathematical model of the nanowire resonator, considering such important characteristics as temperature variations, as well as the electromagnetic fields, added mass, surface and nonlocal effects. The mathematical model is based on the nonlocal Euler-Bernoulli beam theory. The developed model is solved by using the Finite Difference Method (FDM). As a result of this solution, the frequency response of the nanowire resonator has been obtained. Then, based on the developed numerical solution, a parametric study has been carried out to investigate the effects of different parameters on the vibration of nanowire resonators. Finally, the importance of nonlinearity in the modelling of such resonators at the nanoscale has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6(4), 583–586 (2006)

    Article  Google Scholar 

  2. Joshi, A.Y., Sharma, S.C., Harsha, S.: Zeptogram scale mass sensing using single walled carbon nanotube based biosensors. Sens. Actuat. A Phys. 168(2), 275–280 (2011)

    Article  Google Scholar 

  3. Adhikari, S., Chowdhury, R.: Zeptogram sensing from gigahertz vibration: graphene based nanosensor. Phys. E Low-dimens. Syst. Nanostruct. 44(7), 1528–1534 (2012)

    Article  Google Scholar 

  4. Patolsky, F., Zheng, G., Lieber, C.: Nanowire sensors for medicine and the life sciences. Nanomedicine 1(1), 51–65 (2006)

    Article  Google Scholar 

  5. Norouzzadeh, A., Ansari, R., Rouhi, H.: Nonlinear wave propagation analysis in \(\text{ T }\)imoshenko nano-beams considering nonlocal and strain gradient effects. Meccanica 53(13), 3415–3435 (2018)

    Article  MathSciNet  Google Scholar 

  6. Barretta, R., Luciano, R., de Sciarra, F.M., Ruta, G.: Stress-driven nonlocal integral model for timoshenko elastic nano-beams. Eur. J. Mech. A/Solids 72, 275–286 (2018)

    Article  MathSciNet  Google Scholar 

  7. Farajpour, A., Farokhi, H., Ghayesh, M.H., Hussain, S.: Nonlinear mechanics of nanotubes conveying fluid. Int. J Eng. Sci. 133, 132–143 (2018)

    Article  MathSciNet  Google Scholar 

  8. Jamshidifar, H., Askari, H., Fidan, B.: Parameter identification and adaptive control of carbon nanotube resonators. Asian J. Control 20(4), 1329–1338 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fallahpourghadikolaei, R.: Multiscale mathematical modelling of nonlinear nanowire resonators for biological applications. Master’s thesis, Wilfrid Laurier University, Waterloo, Canada (2019)

    Google Scholar 

  10. Ansari, R., Hosseini, K., Darvizeh, A., Daneshian, B.: A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects. Appl. Math. Comput. 219(10), 4977–4991 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Krishnan, A., George, G., Malathi, P.: Use of finite difference method in the study of stepped beams. Int. J. Mech. Eng. Educ. 26(1), 11–24 (1998)

    Article  Google Scholar 

  12. Mohebbi, A., Dehghan, M.: High-order solution of one-dimensional sine-gordon equation using compact finite difference and dirkn methods. Math. Comput. Modell. 51(5–6), 537–549 (2010)

    Article  MathSciNet  Google Scholar 

  13. Rao, S.: Vibration of Continuous Systems. Wiley (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Fallahpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fallahpour, R., Melnik, R. (2021). Numerical Analysis of Nanowire Resonators for Ultra-high Resolution Mass Sensing in Biomedical Applications. In: Kilgour, D.M., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Developments in Mathematical, Statistical and Computational Sciences. AMMCS 2019. Springer Proceedings in Mathematics & Statistics, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-030-63591-6_49

Download citation

Publish with us

Policies and ethics