Skip to main content

Nanocarriers of Drugs for Topical Delivery

  • Chapter
  • First Online:
Nanocarriers for Drug Delivery

Abstract

This chapter explores the use of nanocarriers for the topical delivery of drugs for the treatment of cutaneous disorders, focusing on vesicular systems, solid lipid particles, nanostructured lipid carriers, dispersions of liquid-crystalline phases, micro—and nanoemulsions and dendrimers. Aspects related to the skin, routes of penetration and the nanocarriers are presented, as well as the possible mechanisms involved in the enhancement of the cutaneous penetration of the drugs. In addition, an approach to the therapeutic applicability of these systems in the treatment of skin diseases will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal U, Mehra NK, Gupta U, Jain NK (2013) Hyperbranched dendritic nano-carriers for topical delivery of dithranol. J Drug Target 21:497–506

    Article  CAS  Google Scholar 

  • Ai X, Caffrey M (2000) Membrane protein crystallization in lipidic mesophases: detergent effects. Biophys J 79:394–405

    Article  CAS  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:1–8

    Article  CAS  Google Scholar 

  • Akhtar N, Verma A, Pathak K (2017) Exploring preclinical and clinical effectiveness of nanoformulations in the treatment of atopic dermatitis: Safety aspects and patent reviews. vol 55, Bull Fac Pharmacy, Cairo University

    Google Scholar 

  • Alfons K, Engstrom S (1998) Drug compatibility with the sponge phases formed in monoolein, water, and propylene glycol or poly(ethylene glycol). J Pharm Sci 87:1527–1530

    Article  CAS  Google Scholar 

  • Aljuffali IA, Sung CT, Shen F-M, Huang C-T, Fang J-Y (2014) Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells. AAPS J 16:140–150

    Article  CAS  Google Scholar 

  • Amar-Yuli I, Garti N (2005) Transitions induced by solubilized fat into reverse hexagonal mesophases. Colloids Surf B Biointerfaces 43:72–82

    Article  CAS  Google Scholar 

  • Andrade LM, De Fátima Reis C, Maione-Silva L, Anjos JLV, Alonso A, Serpa RC, Marreto RN, Lima EM, Taveira SF (2014) Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur J Pharm Biopharm 88:40–47

    Article  CAS  Google Scholar 

  • Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28:978–985

    Article  CAS  Google Scholar 

  • Ascenso A, Raposo S, Batista C, Cardoso P, Mendes T, Praça FG, Bentley MVLB, Simões S (2015) Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine 10:5837–5851

    Article  CAS  Google Scholar 

  • Ashtikar M, Nagarsekar K, Fahr A (2016) Transdermal delivery from liposomal formulations – evolution of the technology over the last three decades. J Control Release 242:126–140

    Article  CAS  Google Scholar 

  • Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114

    Article  CAS  Google Scholar 

  • Baspinar Y, Borchert HH (2012) Penetration and release studies of positively and negatively charged nanoemulsions - Is there a benefit of the positive charge? Int J Pharm 430:247–252

    Article  CAS  Google Scholar 

  • Batista CM, Moraes C, De Carvalho B, Santos NS (2007) Lipossomas e suas aplicações terapêuticas: Estado da arte. Brazilian J Pharm Sci. 43(2):167–179

    CAS  Google Scholar 

  • Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V (2016) Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine Nanotechnol Biol Med 12:143–161

    Google Scholar 

  • Benson HAE (2012) Skin structure, function, and permeation. In: Benson HAE, Watkinson AC (Orgs.) (ed) Transdermal and topical drug delivery: principles and practice. Wiley, Hoboken, New Jersey, p 448

    Google Scholar 

  • Borgheti-Cardoso LN, Vicentini FTM de C, Gratieri T, Bentley MVLB (2016) Liquid crystalline systems containing vitamin E TPGS for the controlled transdermal nicotine delivery. Braz J Pharm Sci 52(1):191–200

    Google Scholar 

  • Borowska K, Wołowiec S, Głowniak K, Sieniawska E, Radej S (2012a) Transdermal delivery of 8-methoxypsoralene mediated by polyamidoamine dendrimer G2.5 and G3.5—In vitro and in vivo study. Int J Pharm 436:764–770

    Google Scholar 

  • Borowska K, Wołowiec S, Rubaj A, Głowniak K, Sieniawska E, Radej S (2012b) Effect of polyamidoamine dendrimer G3 and G4 on skin permeation of 8-methoxypsoralene—In vivo study. Int J Pharm 426:280–283

    Article  CAS  Google Scholar 

  • Bouchemal K, Briançon S, Perrier E, Fessi H (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm 280:241–251

    Article  CAS  Google Scholar 

  • Brewer J, Bloksgaard M, Kubiak J, Sørensen JA, Bagatolli LA (2013) Spatially resolved two-color diffusion measurements in human skin applied to transdermal liposome penetration. J Invest Dermatol 133:1260–1268

    Article  CAS  Google Scholar 

  • Buczkowski A, Sekowski S, Grala A, Palecz D, Milowska K, Urbaniak P, Gabryelak T, Piekarski H, Palecz B (2011) Interaction between PAMAM-NH2G4 dendrimer and 5-fluorouracil in aqueous solution. Int J Pharm 408:266–270

    Article  CAS  Google Scholar 

  • Buhleier E, Wehner W, Vögtle F (1978) Cascade”- and “Nonskid-Chain-like” syntheses of molecular cavity topologies. Synthesis pp 155–158

    Google Scholar 

  • Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9:1–33

    Article  CAS  Google Scholar 

  • Bunjes H, Siekmann B, Westesen K (1998) Emulsions of supercooled melts – a novel drug delivery system. In: Benita S (Org.) (ed) Submicron emulsions in drug targeting and delivery. Harwood Academic Publishers, Amsterdam, pp 175–204

    Google Scholar 

  • Caboi F, Amico GS, Pitzalis P, Monduzzi M, Nylander T, Larsson K (2001) Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I Phase behavior Chem Phys Lipids 109:47–62

    Article  CAS  Google Scholar 

  • Caritá AC, Eloy JO, Chorilli M, Lee RJ, Leonardi GR (2018) Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr Med Chem 25:606–635

    Article  CAS  Google Scholar 

  • Castro GA, Coelho ALLR, Oliveira CA, Mahecha GAB, Oréfice RL, Ferreira LAM (2009) Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles. Int J Pharm 381:77–83

    Article  CAS  Google Scholar 

  • Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104(1):226–232

    Article  CAS  Google Scholar 

  • Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, Diwan PV (2003) Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release 90:335–343

    Article  CAS  Google Scholar 

  • Choi SK, Verma M, Silpe J, Moody RE, Tang K, Hanson JJ, Baker JR (2012) A photochemical approach for controlled drug release in targeted drug delivery. Bioorganic Med Chem 20:1281–1290

    Article  CAS  Google Scholar 

  • Cichewicz A, Pacleb C, Connors A, Hass MA, Lopes LB (2013) Cutaneous delivery of α-tocopherol and lipoic acid using microemulsions: Influence of composition and charge. J Pharm Pharmacol 65:817–826

    Article  CAS  Google Scholar 

  • Clogston J, Rathman J, Tomasko D, Walker H, Caffrey M (2000) Phase behavior of a monoacylglycerol: (myverol 18-99 K)/water system. Chem Phys Lipids 107:191–220

    Article  CAS  Google Scholar 

  • D’Emanuele A, Attwood D (2005) Dendrimer-drug interactions. Adv Drug Deliv Rev 57:2147–2162

    Article  CAS  Google Scholar 

  • de Oliveira de Siqueira LB, da Silva Cardoso V, Rodrigues IA, Vazquez-Villa AL, dos Santos EP, da Costa Leal Ribeiro Guimarãe B, dos Santos Cerqueira Coutinho C, Vermelho AB, Junior ER (2017) Development and evaluation of zinc phthalocyanine nanoemulsions for use in photodynamic therapy for Leishmania spp. Nanotechnology 28(6):65101

    Google Scholar 

  • Depieri LV, Praça FSG, Campos PM, Bentley MVLB (2015) Advances in the bioanalytical study of drug delivery across the skin. Ther Deliv 6:571–594

    Google Scholar 

  • Dong Y-D, Larson I, Hanley T, Boyd BJ (2006) Bulk and dispersed aqueous phase behavior of phytantriol: effect of vitamin e acetate and F127 polymer on liquid crystal nanostructure. Langmuir 22:9512–9518

    Article  CAS  Google Scholar 

  • Dorrani M, Garbuzenko OB, Minko T, Michniak-Kohn B (2016) Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy. J Control Release 228:150–158

    Article  CAS  Google Scholar 

  • Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A (2008) Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. J Control Release 127:59–69

    Article  CAS  Google Scholar 

  • Dreier J, Sørensen JA, Brewer JR (2016) Superresolution and fluorescence dynamics evidence reveal that intact liposomes do not cross the human skin barrier. PLoS ONE 11:1–15

    Article  CAS  Google Scholar 

  • Drummond CJ, Fong C (1999) Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 4:449–456

    Article  CAS  Google Scholar 

  • El Maghraby GM (2008) Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: effects of cosurfactants. Int J Pharm 355:285–292

    Article  CAS  Google Scholar 

  • El Maghraby GM, Barry BW, Williams AC (2008) Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 34:203–222

    Article  CAS  Google Scholar 

  • El Maghraby GMM, Williams AC, Barry BW (2000a) Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm 196:63–74

    Article  Google Scholar 

  • El Maghraby GMM, Williams AC, Barry BW (2000b) Skin delivery of oestradiol from lipid vesicles: importance of liposome structure. Int J Pharm 204:159–169

    Article  Google Scholar 

  • El Maghraby GMM, Williams AC, Barry BW (1999) Skin delivery of oestradiol from deformable and traditiona liposomes: mechanistic studies. J Pharm Pharmacol 51:1123–1134

    Article  Google Scholar 

  • El Maghraby GMM, Williams AC, Barry BW (2006) Can drug-bearing liposomes penetrate intact skin? J Pharm Pharmacol 58:415–429

    Article  CAS  Google Scholar 

  • El Zaafarany GM, Awad GAS, Holayel SM, Mortada ND (2010) Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm 397:164–172

    Article  CAS  Google Scholar 

  • Elsayed M, Abdallah O, Naggar V, Khalafallah N (2006) Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm 322:60–66

    Article  CAS  Google Scholar 

  • Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM (2007) Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 332:1–16

    Article  CAS  Google Scholar 

  • Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 22:2163–2173

    Article  CAS  Google Scholar 

  • Fanun M (2012) Microemulsions as delivery systems. Curr Opin Colloid Interface Sci 17:306–313

    Article  CAS  Google Scholar 

  • Filipowicz A, Wołowiec S (2011) Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers. Int J Pharm 408:152–156

    Article  CAS  Google Scholar 

  • Flaten GE, Palac Z, Engesland A, Filipović-Grčić J, Vanić Ž, Škalko-Basnet N (2015) In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci 75:10–24

    Article  CAS  Google Scholar 

  • Fluhr J, Holleran WM, Beradesca E (2015) Clinical effects of emollients on skin. In: Leyden JJ, Rwalings AV (Orgs.) (eds). Skin moisturization. Marcel Dekker, New York, pp 220–242

    Google Scholar 

  • Franzen L, Windbergs M (2015) Applications of Raman spectroscopy in skin research - From skin physiology and diagnosis up to risk assessment and dermal drug delivery. Adv Drug Deliv Rev 89:91–104

    Article  CAS  Google Scholar 

  • Friedman DI, Schwarz JS, Weisspapir M (1995) Submicron emulsion vehicle for enhanced transdermal delivery of steroidal and nonsteroidal antiinflammatory drugs. J Pharm Sci 84:324–329

    Article  CAS  Google Scholar 

  • Garti N, Shevachman M, Shani A (2004) Solubilization of lycopene in jojoba oil microemulsion. J Amer Oil Chem Soc 81:873–877

    Article  CAS  Google Scholar 

  • Gasco MR (1993) Method for producing solid lipid microspheres having a narrow size distribution. USS 188837

    Google Scholar 

  • Geszke-Moritz M, Moritz M (2016) Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Mater Sci Eng C Biol Appl 68:982–994

    Article  CAS  Google Scholar 

  • Goyal R, Macri LK, Kaplan HM, Kohn J (2016) Nanoparticles and nanofibers for topical drug delivery. J Control Release 240:77–92

    Article  CAS  Google Scholar 

  • Graf A, Ablinger E, Peters S, Zimmer A, Hook S, Rades T (2008) Microemulsions containing lecithin and sugar-based surfactants: Nanoparticle templates for delivery of proteins and peptides. Int J Pharm 350:351–360

    Article  CAS  Google Scholar 

  • Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, Ventosa N (2016) Lipid-based nanovesicles for nanomedicine. Chem Soc Rev 45:6520–6545

    Article  CAS  Google Scholar 

  • Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K (1997) submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir 13:6464–6971

    Article  Google Scholar 

  • Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K (1996) Cubic lipid − water phase dispersed into submicron particles. Langmuir 12:4611–4613

    Article  CAS  Google Scholar 

  • Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13:245–251

    Article  CAS  Google Scholar 

  • Hathout RM, Mansour S, Mortada ND, Geneidi AS, Guy RH (2010) Uptake of microemulsion components into the stratum corneum and their molecular effects on skin barrier function. Mol Pharm 7:1266–1273

    Article  CAS  Google Scholar 

  • Herai H, Gratieri T, Thomazine JA, Bentley MVLB, Lopez RFV (2007) Doxorubicin skin penetration from monoolein-containing propylene glycol formulations. Int J Pharm 329:88–93

    Article  CAS  Google Scholar 

  • Heuschkel S, Goebel A, Neubert RHH (2007) Microemulsions—modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci 97:603–631

    Article  CAS  Google Scholar 

  • Honeywell-Nguyen P, De Graaff AM, Wouter Groenink HW, Bouwstra JA (2002) The in vivo and in vitro interactions of elastic and rigid vesicles with human skin. Biochim Biophys Acta 1573(2):130–140

    Article  CAS  Google Scholar 

  • Hong S, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi X, Balogh L, Orr BG, Baker JR, Banaszak Holl MM (2004) Interaction of Poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 15:774–782

    Article  CAS  Google Scholar 

  • Hosmer J, Reed R, Bentley MVLB, Nornoo A, Lopes LB (2009) Microemulsions containing medium-chain glycerides as transdermal delivery systems for hydrophilic and hydrophobic drugs. AAPS PharmSciTech 10:589–596

    Article  CAS  Google Scholar 

  • Hosmer JM, Shin SOOH, Nornoo A, Zheng H, Lopes LB (2011) Influence of internal structure and composition of liquid crystalline phases on topical delivery of paclitaxel. J Pharm Sci 100:1444–1455

    Article  CAS  Google Scholar 

  • Hosmer JM, Steiner AA, Lopes LB (2013) Lamellar liquid crystalline phases for cutaneous delivery of paclitaxel: impact of the monoglyceride. Pharm Res 30:694–706

    Article  CAS  Google Scholar 

  • Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A (2017) Elastic liposomes as novel carriers: Recent advances in drug delivery. Int J Nanomedicine 12:5087–5108

    Article  CAS  Google Scholar 

  • Iqbal B, Ali J, Baboota S (2018) Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int J Dermatol 57:646–660

    Article  Google Scholar 

  • Iwaszkiewicz KS, Hua S (2014) Development of an effective topical liposomal formulation for localized analgesia and anti-inflammatory actions in the complete freund’s adjuvant rodent model of acute inflammatory pain. Pain Phys 17:E719–E735

    Google Scholar 

  • Jahnke S (1998) The theory of high pressure homogenization. In: Müller R, Benita S, Böhm B (Orgs.) (eds) Emulsions and nanosuspensions for the formulation of poorly soluble drugs. Medpharm Scientific Publishers, Stuttgart, pp 177–200

    Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142

    Article  CAS  Google Scholar 

  • Jensen LB, Magnussson E, Gunnarsson L, Vermehren C, Nielsen HM, Petersson K (2010) Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. Int J Pharm 390:53–60

    Article  CAS  Google Scholar 

  • Jensen LB, Pavan GM, Kasimova MR, Rutherford S, Danani A, Nielsen HM, Foged C (2011a) Elucidating the molecular mechanism of PAMAM-siRNA dendriplex self-assembly: effect of dendrimer charge density. Int J Pharm 416:410–418

    Article  CAS  Google Scholar 

  • Jensen LB, Petersson K, Nielsen HM (2011b) In vitro penetration properties of solid lipid nanoparticles in intact and barrier-impaired skin. Eur J Pharm Biopharm 79:68–75

    Article  CAS  Google Scholar 

  • Jeon HS, Seo JE, Kim MS, Kang MH, Oh DH, Jeon SO, Jeong SH, Choi YW, Lee S (2013) A retinyl palmitate-loaded solid lipid nanoparticle system: Effect of surface modification with dicetyl phosphate on skin permeation in vitro and anti-wrinkle effect in vivo. Int J Pharm 452:311–320

    Article  CAS  Google Scholar 

  • Jones AT, Sayers EJ (2012) Cell entry of cell penetrating peptides: tales of tails wagging dogs. J Control Release 161:582–591

    Article  CAS  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307

    Article  CAS  Google Scholar 

  • Khurana S, Bedi PMS, Jain NK (2013) Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem Phys Lipids 175–176:65–72

    Article  CAS  Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48:199–208

    Article  CAS  Google Scholar 

  • Kogan A, Aserin A, Garti N (2007) Improved solubilization of carbamazepine and structural transitions in nonionic microemulsions upon aqueous phase dilution. J Colloid Interface Sci 315:637–647

    Article  CAS  Google Scholar 

  • Kogan A, Garti N (2006) Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123–126:369–385

    Article  CAS  Google Scholar 

  • Kreilgaard M (2002) Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev 54:S77–S98

    Article  CAS  Google Scholar 

  • Kriwet K, Müller-Goymann CC (1995) Diclofenac release from phospholipid drug systems and permeation through excised human stratum corneum. Int J Pharm 125:231–242

    Article  CAS  Google Scholar 

  • Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324

    Article  CAS  Google Scholar 

  • Lademann J, Richter H, Schanzer S, Knorr F, Meinke M, Sterry W, Patzelt A (2011) Penetration and storage of particles in human skin: Perspectives and safety aspects. Eur J Pharm Biopharm 77:465–468

    Article  CAS  Google Scholar 

  • Lane ME (2013) Skin penetration enhancers. Int J Pharm 447:12–21

    Article  CAS  Google Scholar 

  • Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H (2012) Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol 1(2):147–168

    Article  CAS  Google Scholar 

  • Lauterbach A, Muller-Goymann CC (2014) Development, formulation, and characterization of an adapalene-loaded solid lipid microparticle dispersion for follicular penetration. Int J Pharm 466:122–132

    Article  CAS  Google Scholar 

  • Lauterbach A, Müller-Goymann CC (2015) Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm 97:152–163

    Article  CAS  Google Scholar 

  • Lauterbach A, Müller-Goymann CC (2014) Comparison of rheological properties, follicular penetration, drug release, and permeation behavior of a novel topical drug delivery system and a conventional cream. Eur J Pharm Biopharm 88:614–624

    Article  CAS  Google Scholar 

  • Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121

    Article  CAS  Google Scholar 

  • Lee J, Kellaway IW (2000) Combined effect of oleic acid and polyethylene glycol 200 on buccal permeation of [D-Ala2, D-Leu5]enkephalin from a cubic phase of glyceryl monooleate. Int J Pharm 204:137–144

    Article  CAS  Google Scholar 

  • Liang X, Xu Z, Grice J, Zvyagin A, Roberts M, Liu X (2013) Penetration of nanoparticles into human skin. Curr Pharm Des 19:6353–6366

    Article  CAS  Google Scholar 

  • Liu C-H, Chang F-Y, Hung D-K (2011) Terpene microemulsions for transdermal curcumin delivery: effects of terpenes and cosurfactants. Colloids Surf B. Biointerfaces 82:63–70

    Article  CAS  Google Scholar 

  • Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X (2007) Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 328:191–195

    Article  CAS  Google Scholar 

  • Lopes LB (2014) Overcoming the cutaneous barrier with microemulsions. Pharmaceutics 6:52–77

    Article  CAS  Google Scholar 

  • Lopes LB, Ferreira DA, De Paula D, Garcia MTJ, Thomazini JA, Fantini MCA, Bentley MVLB (2006a) Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res 23:1332–1342

    Article  CAS  Google Scholar 

  • Lopes LB, Lopes JLC, Oliveira DCR, Thomazini JA, Garcia MTJ, Fantini MCA, Collett JH, Bentley MVLB (2006b) Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: characterization and study of in vitro and in vivo delivery. Eur J Pharm Biopharm 63:146–155

    Article  CAS  Google Scholar 

  • Lopes LB, VanDeWall H, Li HT, Venugopal V, Li HK, Naydin S, Hosmer J, Levendusky M, Zheng H, Bentley MVLB, Levin R, Hass MA (2010) Topical delivery of lycopene using microemulsions: enhanced skin penetration and tissue antioxidant activity. J Pharm Sci 99:1346–1357

    Article  CAS  Google Scholar 

  • McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729

    Article  CAS  Google Scholar 

  • Mehnert W, Mäder K (2012) Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 64:83–101

    Article  Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    Article  CAS  Google Scholar 

  • Mignani S, El Kazzouli S, Bousmina M, Majoral JP (2013) Dendrimer space concept for innovative nanomedicine: a futuristic vision for medicinal chemistry. Prog Polym Sci 38:993–1008

    Article  CAS  Google Scholar 

  • Montenegro L, Lai F, Offerta A, Sarpietro MG, Micicchè L, Maccioni AM, Valenti D, Fadda AM (2016) From nanoemulsions to nanostructured lipid carriers: a relevant development in dermal delivery of drugs and cosmetics. J Drug Deliv Sci Technol 32:100–112

    Article  CAS  Google Scholar 

  • Montenegro L, Sinico C, Castangia I, Carbone C, Puglisi G (2012) Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: in vitro evaluation. Int J Pharm 434:169–174

    Article  CAS  Google Scholar 

  • Moser K, Kriwet K, Kalia YN, Guy RH (2001a) Enhanced skin permeation of a lipophilic drug using supersaturated formulations. J Control Release 73:245–253

    Article  CAS  Google Scholar 

  • Moser K, Kriwet K, Naik A, Kalia YN, Guy RH (2001b) Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm 52:103–112

    Article  CAS  Google Scholar 

  • Müller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  Google Scholar 

  • Müller RH, Petersen RD, Hommoss A, Pardeike J (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59:522–530

    Article  CAS  Google Scholar 

  • Mutalik S, Shetty PK, Kumar A, Kalra R, Parekh HS (2014) Enhancement in deposition and permeation of 5-fluorouracil through human epidermis assisted by peptide dendrimers. Drug Deliv. 21:44–54

    Article  CAS  Google Scholar 

  • Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK (2009) Dendrimers: Emerging polymers for drug-delivery systems. Eur J Pharm Sci 38:185–196

    Article  CAS  Google Scholar 

  • Nastiti CMRR, Ponto T, Abd E, Grice JE, Benson HAE, Roberts MS (2017) Topical nano and microemulsions for skin delivery. Pharmaceutics 9:1–25

    Article  CAS  Google Scholar 

  • Negi P, Singh B, Sharma G, Beg S, Katare OP (2015) Biocompatible lidocaine and prilocaine loaded-nanoemulsion system for enhanced percutaneous absorption: QbD-based optimisation, dermatokinetics and in vivo evaluation. J Microencapsul 32:419–431

    Article  CAS  Google Scholar 

  • OECD (2004) OEDC Guideline for the testing of chemicals (428): Skin Absorption: in vitro Method, pp 1–8

    Google Scholar 

  • Ogiso T, Iwaki M, Paku T (1995) Effect of various enhancers on transdermal penetration of indomethacin and urea, and relationship between penetration parameters and enhancement factors. J Pharm Sci 84:482–488

    Article  CAS  Google Scholar 

  • Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184

    Article  CAS  Google Scholar 

  • Patzelt A, Knorr F, Blume-Peytavi U, Sterry W, Lademann J (2008) Hair follicles, their disorders and their opportunities. Drug Discov Today Dis Mech 5:173–181

    Article  Google Scholar 

  • Patzelt A, Lademann J, Richter H, Darvin M, Schanzer S, Thiede G, Sterry W, Vergou T, Hauser M (2011) In vivo investigations on the penetration of various oils and their influence on the skin barrier. Ski Res Technol 18:364–369

    Google Scholar 

  • Patzelt A, Richter H, Knorr F, Schäfer U, Lehr CM, Dähne L, Sterry W, Lademann J (2011b) Selective follicular targeting by modification of the particle sizes. J Control Release 150:45–48

    Article  CAS  Google Scholar 

  • Pavan GM, Posocco P, Tagliabue A, Maly M, Malek A, Danani A, Ragg E, Catapano CV, Pricl S (2010) PAMAM dendrimers for siRNA delivery: computational and experimental Insights. Chemistry 16(26):7781–7795

    Article  CAS  Google Scholar 

  • Peira E, Carlotti ME, Trotta C, Cavalli R, Trotta M (2008) Positively charged microemulsions for topical application. Int J Pharm 346:119–123

    Article  CAS  Google Scholar 

  • Pepe D, Carvalho VFM, McCall M, de Lemos DP, Lopes LB (2016) Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel. Int J Nanomedicine 11:2009–2019

    CAS  Google Scholar 

  • Pepe D, McCall M, Zheng H, Lopes LB (2013) Protein transduction domain-containing microemulsions as cutaneous delivery systems for an anticancer agent. J Pharm Sci 102:1476–1487

    Article  CAS  Google Scholar 

  • Pepe D, Phelps J, Lewis K, DuJack J, Scarlett K, Jahan S, Bonnier E, Milic-Pasetto T, Hass MA, Lopes LB (2012) Decylglucoside-based microemulsions for cutaneous localization of lycopene and ascorbic acid. Int J Pharm 434:420–428

    Article  CAS  Google Scholar 

  • Perez AP, Altube MJ, Schilrreff P, Apezteguia G, Celes FS, Zacchino S, de Oliveira CI, Romero EL, Morilla MJ (2016) Topical amphotericin B in ultradeformable liposomes: formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids Surf B Biointerfaces 139:190–198

    Article  CAS  Google Scholar 

  • Peterson J, Ebber A, Allikmaa V, Lopp M (2001) Synthesis and Cze analysis of pamam dendrimers with an ethylenediamine core. Proc Est Acad Sci, Chem 50:156–166

    CAS  Google Scholar 

  • Pople PV, Singh KK (2013) Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, part II-In vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur J Pharm Biopharm 84:72–83

    Article  CAS  Google Scholar 

  • Pradhan M, Singh D, Singh MR (2015) Development characterization and skin permeating potential of lipid based novel delivery system for topical treatment of psoriasis. Chem Phys Lipids 186:9–16

    Article  CAS  Google Scholar 

  • Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, Wurm EMT, Yoong C, Robertson TA, Soyer HP, Roberts MS (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 63:470–491

    Article  CAS  Google Scholar 

  • Ren Q, Deng C, Meng U, Chen Y, Chen U, Sha X, Fang X (2014) In Vitro, Ex Vivo, and In Vivo evaluation of the effect of saturated fat acid chain length on the transdermal behavior of ibuprofen-loaded microemulsions. J Pharm Sci 103:1680–1691

    Article  CAS  Google Scholar 

  • Rizwan SB, Boyd BJ, Rades T, Hook S (2010) Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin Drug Deliv 7:1133–1144

    Article  CAS  Google Scholar 

  • Rojanasakul Y, Wang L-Y, Bhat M, Glover DD, Malanga CJ, Ma JKH (1992) The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res 9:1029–1034

    Article  CAS  Google Scholar 

  • Rossetti FC, Depieri LV, Praça FG, Del Ciampo JO, Fantini MCA, Pierre MBR, Tedesco AC, Bentley MVLB (2016) Optimization of protoporphyrin IX skin delivery for topical photodynamic therapy: nanodispersions of liquid-crystalline phase as nanocarriers. Eur J Pharm Sci 83:99–108

    Article  CAS  Google Scholar 

  • Ruela ALM, Perissinato AG, Lino MES, Mudrik PS, Pereira GR (2016) Evaluation of skin absorption of drugs from topical and transdermal formulations. Brazilian J Pharm Sci 52:527–544

    Article  CAS  Google Scholar 

  • Santos P, Watkinson AC, Hadgraft J, Lane ME (2008) Application of microemulsions in dermal and transdermal drug delivery. Skin Pharmacol. Physiol. 21:246–259

    Article  CAS  Google Scholar 

  • Sartorelli P, Andersen HR, Angerer J, Corish J, Drexler H, Goen T, Griffin P, Hotchkiss SAM, Larese F, Montomoli L, Perkins J, Schmelz M, Sandt JVD, Williams F (2000) Percutaneous penetration studies for risk assessment. Environ Toxicol Pharmacol 8(2):133–152

    Article  CAS  Google Scholar 

  • Savić S, Savić M, Tamburić S, Vuleta G, Vesić S, Müller-Goymann CC (2007) An alkylpolyglucoside surfactant as a prospective pharmaceutical excipient for topical formulations: the influence of oil polarity on the colloidal structure and hydrocortisone in vitro/in vivo permeation. Eur J Pharm Sci 30:441–450

    Article  CAS  Google Scholar 

  • Schäfer-Korting M, Mehnert W, Korting HC (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59:427–443

    Article  CAS  Google Scholar 

  • Schmook FP, Meingassener JG, Andreas B (2001) Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int J Pharm 215:51–56

    Article  CAS  Google Scholar 

  • Schwarz J, Weisspapir M, Friedman D (1995) Enhanced transdermal delivery of diazepam by submicron emulsion (SME) creams. Pharm Res 12:687–692

    Article  CAS  Google Scholar 

  • Shah JC, Sadhale Y, Chilukuri DM (2001) Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 47:229–250

    Article  CAS  Google Scholar 

  • Shah KA, Date AA, Joshi MD, Patravale VB (2007) Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm 345:163–171

    Article  CAS  Google Scholar 

  • Shah SM, Ashtikar M, Jain AS, Makhija DT, Nikam Y, Gude RP, Steiniger F, Jagtap AA, Nagarsenker MS, Fahr A (2015) LeciPlex, invasomes, and liposomes: a skin penetration study. Int J Pharm 490:391–403

    Article  CAS  Google Scholar 

  • Shamma RN, Aburahma MH (2014) Follicular delivery of spironolactone via nanostructured lipid carriers for management of alopecia. Int J Nanomedicine 9:5449–5460

    Article  CAS  Google Scholar 

  • Sharma A, Gautam SP, Gupta AK (2011) Surface modified dendrimers: Synthesis and characterization for cancer targeted drug delivery. Bioorg Med Chem 19:3341–3346

    Article  CAS  Google Scholar 

  • Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and llimitations. Int J Pharm 154:123–140

    Article  CAS  Google Scholar 

  • Shumilov M, Touitou E (2010) Buspirone transdermal administration for menopausal syndromes, in vitro and in animal model studies. Int J Pharm 387:26–33

    Article  CAS  Google Scholar 

  • Siekmann B, Bunjes H, Koch MHJ, Westesen K (2002) Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride–water phases. Int J Pharm 244:33–43

    Article  CAS  Google Scholar 

  • Siekmann B, Westesen K (1996) Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. Eur J Pharm Biopharm 43:104–109

    Google Scholar 

  • Singh S (2000) Phase transitions in liquid crystals. Phys Rep 324:107–269

    Article  CAS  Google Scholar 

  • Sipai Altaf Bhai M, Vandana Y, Mamatha Y, Prasanth VV (2012) Liposome: an overview. J Pharm Sci Innov 1:13–21

    Google Scholar 

  • Sivaramakrishnan R, Nakamura C, Mehnert W, Korting HC, Kramer KD, Schäfer-Korting M (2004) Glucocorticoid entrapment into lipid carriers — characterisation by parelectric spectroscopy and influence on dermal uptake. J Control Release 97:493–502

    Article  CAS  Google Scholar 

  • Sjöström B, Bergenståhl B (1992) Preparation of submicron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate. Int J Pharm 88:53–62

    Google Scholar 

  • Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10:102–110

    Article  CAS  Google Scholar 

  • Solans C, Solé I (2012) Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci 17:246–254

    Article  CAS  Google Scholar 

  • Sun M, Fan A, Wang Z, Zhao Y (2012) Dendrimer-mediated drug delivery to the skin. Soft Matter 8:4301–4305

    Article  CAS  Google Scholar 

  • Todosijević MN, Savić MM, Batinić BB, Marković BD, Gašperlin M, Ranđelović DV, Lukić MŽ, Savić SD (2015) Biocompatible microemulsions of a model NSAID for skin delivery: a decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance. Int J Pharm 496:931–941

    Article  CAS  Google Scholar 

  • Tyle P (1989) Liquid crystal and their application in drug delivery, Controlled released of drug: polymers and aggregate systems. Morton Rosoff UHC Publisher, New York

    Google Scholar 

  • Uprit S, Kumar Sahu R, Roy A, Pare A (2013) Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm J. 21:379–385

    Article  Google Scholar 

  • Van Den Bergh BAI, Vroom J, Gerritsen H, Junginger HE, Bouwstra JA (1999) Interactions of elastic and rigid vesicles with human skin in vitro: electron microscopy and two-photon excitation microscopy. Biochim Biophys Acta 1461(1):155–173

    Article  Google Scholar 

  • van Kuijk-Meuwissen ME, Mougin L, Junginger HE, Bouwstra JA (1998) Application of vesicles to rat skin in vivo: a confocal laser scanning microscopy study. J Control Release 56:189–196

    Article  Google Scholar 

  • Vanić Z, Holæter A-M, Skalko-Basnet N (2015) (Phospho) lipid-based nanosystems for skin administration. Curr Pharm Des 21:4174–4192

    Article  CAS  Google Scholar 

  • Venuganti VV, Sahdev P, Hildreth M, Guan X, Perumal O (2011) Structure-skin permeability relationship of dendrimers. Pharm Res 28:2246

    Article  CAS  Google Scholar 

  • Venuganti VVK, Perumal OP (2009) Poly(amidoamine) dendrimers as skin penetration enhancers: influence of charge, generation, and concentration. J Pharm Sci 98:2345–2356

    Article  CAS  Google Scholar 

  • Venuganti VVK, Perumal OP (2008) Effect of poly(amidoamine) (PAMAM) dendrimer on skin permeation of 5-fluorouracil. Int J Pharm 361:230–238

    Article  CAS  Google Scholar 

  • Vicentini FT, Depieri LV, Polizello AC, Del Ciampo JO, Spadaro AC, Fantini MC, Bentley MVLB (2013) Liquid crystalline phase nanodispersions enable skin delivery of siRNA. Eur J Pharm Biopharm 83(1):16–24

    Article  CAS  Google Scholar 

  • Vitorino C, Sousa J, Pais A (2015) Overcoming the skin permeation barrier: challenges and opportunities. Curr Pharm Des 21:2698–2712

    Article  CAS  Google Scholar 

  • Vogt A, Mandt N, Lademann J, Schaefer H, Blume-Peytavi U (2005) Follicular targeting—a promising tool in selective dermatotherapy. J Invest Dermatol 10:252–255

    Article  Google Scholar 

  • Vogt A, Wischke C, Neffe AT, Ma N, Alexiev U, Lendlein A (2016) Nanocarriers for drug delivery into and through the skin — do existing technologies match clinical challenges? J Control Release 242:3–15

    Article  CAS  Google Scholar 

  • Williams AC, Barry BW (2012) Penetration enhancers. Adv Drug Deliv Rev 64:128–137

    Article  Google Scholar 

  • Yang Y, Sunoqrot S, Stowell C, Ji J, Lee C-W, Kim JW, Khan SA, Hong S (2012) Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromol 13:2154–2162

    Article  CAS  Google Scholar 

  • Yilmaz E, Borchert H-H (2005) Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides. Eur J Pharm Biopharm 60:91–98

    Article  CAS  Google Scholar 

  • Yiyun C, Na M, Tongwen X, Rongqiang F, Xueyuan W, Xiaomin W, Longping W (2007) Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J Pharm Sci 96:595–602

    Article  CAS  Google Scholar 

  • Yukuyama MN, Ghisleni DDM, Pinto TJA, Bou-Chacra NA (2016) Nanoemulsion: process selection and application in cosmetics—A review. Int J Cosmet Sci 38:13–24

    Article  CAS  Google Scholar 

  • Zhai Y, Yang X, Zhao L, Wang Z, Zhai G (2014) Lipid nanocapsules for transdermal delivery of ropivacaine: in vitro and in vivo evaluation. Int J Pharm 471:103–111

    Article  CAS  Google Scholar 

  • Zhai Y, Zhai G (2014) Advances in lipid-based colloid systems as drug carrier for topic delivery. J. Control. Release 193:90–99

    Article  CAS  Google Scholar 

  • Zhang J, Michniak-Kohn B (2011) Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: Ketoprofen, lidocaine, and caffeine. Int J Pharm 421:34–44

    Article  CAS  Google Scholar 

  • Zhang Y, Zhou C, Kwak KJ, Wang X, Yung B, Lee LJ, Wang Y, Wang PG, Lee RJ (2012) Efficient siRNA delivery using a polyamidoamine dendrimer with a modified pentaerythritol core. Pharm Res 29:1627–1636

    Article  CAS  Google Scholar 

  • Zheng Y, Ouyang WQ, Wei YP, Syed SF, Hao CS, Wang BZ, Shang YH (2016) Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int J Nanomedicine 11:5971–5987

    Article  CAS  Google Scholar 

  • Zhou J, Wu J, Hafdi N, Behr JP, Erbacher P, Peng L (2006) PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Commun 22:2362–2364

    Article  CAS  Google Scholar 

  • Zoschke C, Schilrreff P, Romero EL, Brandner JM, Schäfer M (2015) Dendritic nanoparticles for cutaneous drug delivery—testing in human skin and reconstructed human skin. Curr Pharm Des 21:2784–2800

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Junqueira Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia, M.J., Lopes, L.B., Pereira, G.R., Andréo-Filho, N. (2021). Nanocarriers of Drugs for Topical Delivery. In: Eloy, J.O., Abriata, J.P., Marchetti, J.M. (eds) Nanocarriers for Drug Delivery. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-63389-9_8

Download citation

Publish with us

Policies and ethics