Skip to main content
Log in

Efficient siRNA Delivery Using a Polyamidoamine Dendrimer with a Modified Pentaerythritol Core

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Delivery of siRNA into cells remains a critical challenge. Our lab has shown a novel polyamidoamine (PAMAM) dendrimer with modified pentaerythritol derivative core (PD dendrimer) to exhibit high plasmid DNA transfection efficiency and low cytotoxicity. Here, we evaluate PD dendrimer as a siRNA carrier.

Methods

Agarose gel electrophoresis and AFM were used to confirm formation of generation 5 (G5)-PD dendrimer/siRNA nanoparticles (NPs). G5 PD dendrimer/anti-luciferase siRNA NPs were used to transfect SK Hep-1 cells with stable luciferase expression. Effects of various endocytic pathway inhibitors on uptake of G5 PD dendrimer/siRNA NPs in SK Hep-1 cells were also investigated.

Results

Agarose gel electrophoresis indicated that G5 PD dendrimer and siRNA formed NPs at weight ratios >0.5:1. G5 PD dendrimer showed effective luciferase gene silencing when weight ratio was 3.0:1 and above. Treatment with endocytosis inhibitors showed that clathrin-mediated endocytosis was the main endocytic pathway by which G5-PD dendrimer/siRNA NPs enter the cell.

Conclusions

These results show that the novel G5 PD dendrimer has high siRNA delivery activity and is promising as a delivery agent for its therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. E. A. E. AK. Insight-RNA Interference. Nature 431: (2004).

  2. Huang Y, Chen J, Chen X, Gao J, Liang W. PEGylated synthetic surfactant vesicles (Niosomes): novel carriers for oligonucleotides. J Mater Sci Mater Med. 2008;19:607–14.

    Article  PubMed  CAS  Google Scholar 

  3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  PubMed  CAS  Google Scholar 

  4. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit J-P. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29:3477–96.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang S, Zhao B, Jiang H, Wang B, Ma B. Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release. 2007;123:1–10.

    Article  PubMed  CAS  Google Scholar 

  6. Svensonand S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2005;57:2106–29.

    Article  Google Scholar 

  7. Ohsaki M, Okuda T, Wada A, Hirayama T, Niidome T, Aoyagi H. In Vitro Gene Transfection Using Dendritic Poly(l-lysine). Bioconjug Chem. 2002;13:510–7.

    Article  PubMed  CAS  Google Scholar 

  8. Patil ML, Zhang M, Taratula O, Garbuzenko OB, He H, Minko T. Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. Biomacromolecules. 2009;10:258–66.

    Article  PubMed  CAS  Google Scholar 

  9. Kim HK, Davaa E, Myung CS, Park JS. Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid. Int J Pharm. 2010;392:141–7.

    Article  PubMed  CAS  Google Scholar 

  10. J. Zhou, J. Wu, N. Hafdi, J.-P. Behr, P. Erbacher, and L. Peng. PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Comm. 2006;22:2362–4.

    Google Scholar 

  11. Patil ML, Zhang M, Betigeri S, Taratula O, He H, Minko T. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug Chem. 2008;19:1396–403.

    Article  PubMed  CAS  Google Scholar 

  12. Wang Y, Kong W, Song Y, Duan Y, Wang L, Steinhoff G, Kong D, Yu Y. Polyamidoamine dendrimers with a modified pentaerythritol core having high efficiency and low cytotoxicity as gene carriers. Biomacromolecules. 2009;10:617–22.

    Article  PubMed  CAS  Google Scholar 

  13. Zhou C, Yu B, Yang X, Huo T, Lee LJ, Barth RF, Lee RJ. Lipid-coated nano-calcium-phosphate (LNCP) for gene delivery. Int J Pharm. 2010;392:201–8.

    Article  PubMed  CAS  Google Scholar 

  14. C. Zhou, Y. Mao, Y. Sugimoto, Y. Zhang, N. Kanthamnen, B. Yu, R. Brueggemeier, L. J. Lee, and R. J. Lee. SPANosomes as delivery vehicles for small interfering RNA (siRNA). Mol Pharm, doi:10.1021/mp200426h (Accepted).

  15. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58:32–45.

    Article  PubMed  CAS  Google Scholar 

  16. Killisch I, Steinlein P, Romisch K, Hollinshead R, Beug H, Griffiths G. Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome. J Cell Sci. 1992;103:211–32.

    PubMed  CAS  Google Scholar 

  17. Lencer WI, Hirst TR, Holmes RK. Membrane traffic and the cellular uptake of cholera toxin. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research. 1999;1450:177–90.

    Article  CAS  Google Scholar 

  18. Chuand JJH, Ng ML. Infectious entry of west Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol. 2004;78:10543–55.

    Article  Google Scholar 

  19. Kruth HS, Jones NL, Huang W, Zhao B, Ishii I, Chang J, Combs CA, Malide D, Zhang W-Y. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem. 2005;280:2352–60.

    Article  PubMed  CAS  Google Scholar 

  20. Nabiand IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol. 2003;161:673–7.

    Article  Google Scholar 

  21. Tyagiand S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14:303–8.

    Article  Google Scholar 

  22. Boukany PE, Morss A, Liao WC, Henslee B, Jung H, Zhang X, Yu B, Wang X, Wu Y, Li L, Gao K, Hu X, Zhao X, Hemminger O, Lu W, Lafyatis GP, Lee LJ. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol. 2011;6:747–54.

    Article  PubMed  CAS  Google Scholar 

  23. C. Zhou, L. J. Lee, and R. J. Lee. Cellular pharmacokinetics (PK) and target gene knockdown of surfactant- and lipid-based nanocarriers (NCs) of siRNA. AAPS J 13: Abstract W3028 (2011).

  24. Waiteand CL, Roth CM. PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma. Bioconjug Chem. 2009;20:1908–16.

    Article  Google Scholar 

  25. Kang H, DeLong R, Fisher M, Juliano R. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm Res. 2005;22:2099–106.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This research was supported by Natural Science Foundation of China (No. 50803029), NIH grant R01CA135243, and NSF grant EEC-0425626 to R. Lee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanming Wang, Peng George Wang or Robert J. Lee.

Additional information

Yue Zhang and Chenguang Zhou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(DOC 3629 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhou, C., Kwak, K.J. et al. Efficient siRNA Delivery Using a Polyamidoamine Dendrimer with a Modified Pentaerythritol Core. Pharm Res 29, 1627–1636 (2012). https://doi.org/10.1007/s11095-012-0676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0676-x

KEY WORDS

Navigation