Skip to main content

Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume I

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1303))

Abstract

According to the World Symposium Pulmonary Hypertension (WSPH) classification, pulmonary hypertension (PH) is classified into five categories based on etiology. Among them, Group 1 pulmonary arterial hypertension (PAH) disorders are rare but progressive and often, fatal despite multiple approved treatments. Elevated pulmonary arterial pressure in patients with WSPH Group 1 PAH is mainly caused by increased pulmonary vascular resistance (PVR), due primarily to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Growing evidence indicates that inflammation plays a critical role in the development of pulmonary vascular remodeling associated with PAH. While the role of auto-immunity is unclear, infiltration of inflammatory cells in and around vascular lesions, including T- and B-cells, dendritic cells, macrophages, and mast cells have been observed in PAH patients. Serum and plasma levels of chemokines, cytokines, and autoantibodies are also increased in PAH patients; some of these circulating molecules are correlated with disease severity and survival. Preclinical experiments have reported a key role of the inflammation in PAH pathophysiology in vivo. Importantly, anti-inflammatory and immunosuppressive agents have further exhibited therapeutic effects. The present chapter reviews published experimental and clinical evidence highlighting the canonical role of inflammation in the pathogenesis of PAH and as a major target for the development of anti-inflammatory therapies in patients with PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCL:

chemokine (C-C motif) ligand

CHD:

congenital heart disease

COPD:

chronic obstructive pulmonary disease

CTD:

connective tissue disease

CXCL:

chemokine (C-X-C motif) ligand

CX3CL1:

chemokine (C-X3-C motif) ligand 1

DC:

dendritic cell

EC:

endothelial cell

ECE-1:

endothelin converting enzyme 1

ET-1:

endothelin-1

HIV:

human immunodeficiency virus

LHD:

left heart disease

MCP-1:

monocyte chemotactic protein

MCT:

monocrotaline

PAH:

pulmonary arterial hypertension

PASMC:

pulmonary artery smooth muscle cell

PVR:

pulmonary vascular resistance

RV:

right ventricle

SSc:

systemic sclerosis

TGF-β:

transforming growth factor β

Th:

T-helper

TNF-α:

tumor necrosis factor α

References

  1. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1):180193.

    Article  CAS  Google Scholar 

  2. Tuder RM. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res. 2017;367(3):643–9.

    Article  PubMed  Google Scholar 

  3. Sakao S, Tatsumi K. Crosstalk between endothelial cell and thrombus in chronic thromboembolic pulmonary hypertension: perspective. Histol Histopathol. 2013;28(2):185–93.

    PubMed  CAS  Google Scholar 

  4. Wang Z, Chesler NC. Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ. 2011;1(2):212–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol. 1994;144(2):275–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115(1):165–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hassoun PM, Mouthon L, Barberà JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009;54(1 Suppl):S10–9.

    Article  PubMed  CAS  Google Scholar 

  8. Crosby A, Jones FM, Southwood M, Stewart S, Schermuly R, Butrous G, Dunne DW, Morrell NW. Pulmonary vascular remodeling correlates with lung eggs and cytokines in murine schistosomiasis. Am J Respir Crit Care Med. 2010;181(3):279–88.

    Article  PubMed  CAS  Google Scholar 

  9. Hu J, Xu Q, Mctiernan C, Lai YC, Osei-Hwedieh D, Gladwin M. Novel targets of drug treatment for pulmonary hypertension. Am J Cardiovasc Drugs. 2015;15(4):225–34.

    Article  PubMed  CAS  Google Scholar 

  10. Evans JDW, Girerd B, Montani D, Wang X-J, Galiè N, Austin ED, Elliott G, Asano K, Grünig E, Yan Y, Jing Z-C, Manes A, Palazzini M, Wheeler LA, Nakayama I, Satoh T, Eichstaedt C, Hinderhofer K, Wolf M, Rosenzweig EB, Chung WK, Soubrier F, Simonneau G, Sitbon O, Gräf S, Kaptoge S, Di Angelantonio E, Humbert M, Morrell NW. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. Lancet Respir Med. 2016;4(2):129–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Garg L, Akbar G, Agrawal S, Agarwal M, Khaddour L, Handa R, Garg A, Shah M, Patel B, Dalal BD. Drug-induced pulmonary arterial hypertension: a review. Heart Fail Rev. 2017;22(3):289–97.

    Article  PubMed  CAS  Google Scholar 

  12. Aithala R, Alex AG, Danda D. Pulmonary hypertension in connective tissue diseases: an update. Int J Rheum Dis. 2017;20(1):5–24.

    Article  PubMed  CAS  Google Scholar 

  13. Sundaram SM, Chung L. An update on systemic sclerosis-associated pulmonary arterial hypertension: a review of the current literature. Curr Rheumatol Rep. 2018;20(2):10.

    Article  PubMed  Google Scholar 

  14. Lowe BS, Therrien J, Ionescu-Ittu R, Pilote L, Martucci G, Marelli AJ. Diagnosis of pulmonary hypertension in the congenital heart disease adult population impact on outcomes. J Am Coll Cardiol. 2011;58(5):538–46.

    Article  PubMed  Google Scholar 

  15. Duffels MGJ, Engelfriet PM, Berger RMF, Van Loon RLE, Hoendermis E, Vriend JWJ, Van Der Velde ET, Bresser P, Mulder BJM. Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry. Int J Cardiol. 2007;120(2):198–204.

    Article  PubMed  CAS  Google Scholar 

  16. Sitbon O, Lascoux-Combe C, Delfraissy J-F, Yeni PG, Raffi F, De Zuttere D, Gressin V, Clerson P, Sereni D, Simonneau G. Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am J Respir Crit Care Med. 2008;177(1):108–13.

    Article  PubMed  Google Scholar 

  17. Alves JL, Gavilanes F, Jardim C, Fernandes CJCDS, Morinaga LTK, Dias B, Hoette S, Humbert M, Souza R. Pulmonary arterial hypertension in the southern hemisphere: results from a registry of incident Brazilian cases. Chest. 2015;147(2):495–501.

    Article  PubMed  Google Scholar 

  18. Gavilanes F, Fernandes CJC, Souza R. Pulmonary arterial hypertension in schistosomiasis. Curr Opin Pulm Med. 2016;22(5):408–14.

    Article  PubMed  CAS  Google Scholar 

  19. Hall S, Brogan P, Haworth SG, Klein N. Contribution of inflammation to the pathology of idiopathic pulmonary arterial hypertension in children. Thorax. 2009;64(9):778–83.

    Article  PubMed  CAS  Google Scholar 

  20. Pinto RFA, Higuchi MDL, Aiello VD. Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovasc Pathol. 2004;13(5):268–75.

    Article  PubMed  Google Scholar 

  21. Perros F, Dorfmüller P, Souza R, Durand-Gasselin I, Mussot S, Mazmanian M, Hervé P, Emilie D, Simonneau G, Humbert M. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur Respir J. 2007;29(3):462–8.

    Article  PubMed  CAS  Google Scholar 

  22. Heath D, Yacoub M. Lung mast cells in plexogenic pulmonary arteriopathy. J Clin Pathol. 1991;44(12):1003–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mitani Y, Ueda M, Maruyama K, Shimpo H, Kojima A, Matsumura M, Aoki K, Sakurai M. Mast cell chymase in pulmonary hypertension. Thorax. 1999;54(1):88–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hamada H, Terai M, Kimura H, Hirano K, Oana S, Niimi H. Increased expression of mast cell chymase in the lungs of patients with congenital heart disease associated with early pulmonary vascular disease. Am J Respir Crit Care Med. 1999;160(4):1303–8.

    Article  PubMed  CAS  Google Scholar 

  25. Perros F, Dorfmüller P, Montani D, Hammad H, Waelput W, Girerd B, Raymond N, Mercier O, Mussot S, Cohen-Kaminsky S, Humbert M, Lambrecht BN. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185(3):311–21.

    Article  PubMed  Google Scholar 

  26. Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, Mclaughlin VV, Jessup M, Grizzle WE, Aldred MA, Cool CD, Tuder RM. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(3):261–72.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, Duroux P, Galanaud P, Simonneau G, Emilie D. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;151(5):1628–31.

    Article  PubMed  CAS  Google Scholar 

  28. Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, Trembath RC, Jennings S, Barker L, Nicklin P, Walker C, Budd DC, Pepke-Zaba J, Morrell NW. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122(9):920–7.

    Article  PubMed  CAS  Google Scholar 

  29. Sanchez O, Marcos E, Perros F, Fadel E, Tu L, Humbert M, Dartevelle P, Simonneau G, Adnot S, Eddahibi S. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2007;176(10):1041–7.

    Article  PubMed  CAS  Google Scholar 

  30. Dorfmüller P, Zarka V, Durand-Gasselin I, Monti G, Balabanian K, Garcia G, Capron F, Coulomb-Lherminé A, Marfaing-Koka A, Simonneau G, Emilie D, Humbert M. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002;165(4):534–9.

    Article  PubMed  Google Scholar 

  31. Balabanian K, Foussat A, Dorfmüller P, Durand-Gasselin I, Capel F, Bouchet-Delbos L, Portier A, Marfaing-Koka A, Krzysiek R, Rimaniol A-C, Simonneau G, Emilie D, Humbert M. CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002;165(10):1419–25.

    Article  PubMed  Google Scholar 

  32. Diller G-P, Van Eijl S, Okonko DO, Howard LS, Ali O, Thum T, Wort SJ, Bédard E, Gibbs JSR, Bauersachs J, Hobbs AJ, Wilkins MR, Gatzoulis MA, Wharton J. Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation. 2008;117(23):3020–30.

    Article  PubMed  CAS  Google Scholar 

  33. Okawa-Takatsuji M, Aotsuka S, Uwatoko S, Kinoshita M, Sumiya M. Increase of cytokine production by pulmonary artery endothelial cells induced by supernatants from monocytes stimulated with autoantibodies against U1-ribonucleoprotein. Clin Exp Rheumatol. 1999;17(6):705–12.

    PubMed  CAS  Google Scholar 

  34. Humbert M, Monti G, Fartoukh M, Magnan A, Brenot F, Rain B, Capron F, Galanaud P, Duroux P, Simonneau G, Emilie D. Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. Eur Respir J. 1998;11(3):554–9.

    Article  PubMed  CAS  Google Scholar 

  35. Niu X, Nouraie M, Campbell A, Rana S, Minniti CP, Sable C, Darbari D, Dham N, Reading NS, Prchal JT, Kato GJ, Gladwin MT, Castro OL, Gordeuk VR. Angiogenic and inflammatory markers of cardiopulmonary changes in children and adolescents with sickle cell disease. PLoS One. 2009;4(11):e7956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Quarck R, Nawrot T, Meyns B, Delcroix M. C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension. J Am Coll Cardiol. 2009;53(14):1211–8.

    Article  PubMed  CAS  Google Scholar 

  37. Molossi S, Clausell N, Rabinovitch M. Reciprocal induction of tumor necrosis factor-alpha and interleukin-1 beta activity mediates fibronectin synthesis in coronary artery smooth muscle cells. J Cell Physiol. 1995;163(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  38. Jones PL, Cowan KN, Rabinovitch M. Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. Am J Pathol. 1997;150(4):1349–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Courboulin A, Tremblay VL, Barrier M, Meloche J, Jacob MH, Chapolard M, Bisserier M, Paulin R, Lambert C, Provencher S, Bonnet S. Krüppel-like factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respir Res. 2011;12:128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chang B, Wigley FM, White B, Wise RA. Scleroderma patients with combined pulmonary hypertension and interstitial lung disease. J Rheumatol. 2003;30(11):2398–405.

    PubMed  Google Scholar 

  41. Murata I, Kihara H, Shinohara S, Ito K. Echocardiographic evaluation of pulmonary arterial hypertension in patients with progressive systemic sclerosis and related syndromes. Jpn Circ J. 1992;56(10):983–91.

    Article  PubMed  CAS  Google Scholar 

  42. Battle RW, Davitt MA, Cooper SM, Buckley LM, Leib ES, Beglin PA, Tischler MD. Prevalence of pulmonary hypertension in limited and diffuse scleroderma. Chest. 1996;110(6):1515–9.

    Article  PubMed  CAS  Google Scholar 

  43. Artlett CM, Sassi-Gaha S, Rieger JL, Boesteanu AC, Feghali-Bostwick CA, Katsikis PD. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum. 2011;63(11):3563–74.

    Article  PubMed  CAS  Google Scholar 

  44. O’reilly S. Innate immunity in systemic sclerosis pathogenesis. Clin Sci (London, England: 1979). 2014;126(5):329–37.

    Article  CAS  Google Scholar 

  45. Chizzolini C, Raschi E, Rezzonico R, Testoni C, Mallone R, Gabrielli A, Facchini A, Del Papa N, Borghi MO, Dayer JM, Meroni PL. Autoantibodies to fibroblasts induce a proadhesive and proinflammatory fibroblast phenotype in patients with systemic sclerosis. Arthritis Rheum. 2002;46(6):1602–13.

    Article  PubMed  CAS  Google Scholar 

  46. Steen VD. Autoantibodies in systemic sclerosis. Semin Arthritis Rheum. 2005;35(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  47. Okano Y, Steen VD, Medsger TA. Autoantibody to U3 nucleolar ribonucleoprotein (fibrillarin) in patients with systemic sclerosis. Arthr Rheumat. 1992;35(1):95–100.

    Article  CAS  Google Scholar 

  48. Tamby MC, Humbert M, Guilpain P, Servettaz A, Dupin N, Christner JJ, Simonneau G, Fermanian J, Weill B, Guillevin L, Mouthon L. Antibodies to fibroblasts in idiopathic and scleroderma-associated pulmonary hypertension. Eur Respir J. 2006;28(4):799–807.

    Article  PubMed  CAS  Google Scholar 

  49. Negi VS, Tripathy NK, Misra R, Nityanand S. Antiendothelial cell antibodies in scleroderma correlate with severe digital ischemia and pulmonary arterial hypertension. J Rheumatol. 1998;25(3):462–6.

    PubMed  CAS  Google Scholar 

  50. Arnaud L, Agard C, Haroche J, Cacoub P, Piette JC, Amoura Z. Pulmonary arterial hypertension in systemic lupus erythematosus. La Revue de medecine interne. 2011;32(11):689–97.

    Article  PubMed  CAS  Google Scholar 

  51. Ruiz-Irastorza G, Garmendia M, Villar I, Egurbide M-V, Aguirre C. Pulmonary hypertension in systemic lupus erythematosus: prevalence, predictors and diagnostic strategy. Autoimmun Rev. 2013;12(3):410–5.

    Article  PubMed  Google Scholar 

  52. Quismorio FP, Sharma O, Koss M, Boylen T, Edmiston AW, Thornton PJ, Tatter D. Immunopathologic and clinical studies in pulmonary hypertension associated with systemic lupus erythematosus. Semin Arthritis Rheum. 1984;13(4):349–59.

    Article  PubMed  Google Scholar 

  53. Asherson RA, Hackett D, Gharavi AE, Harris EN, Kennedy HG, Hughes GR. Pulmonary hypertension in systemic lupus erythematosus: a report of three cases. J Rheumatol. 1986;13(2):416–20.

    PubMed  CAS  Google Scholar 

  54. Shen JY, Chen SL, Wu YX, Tao RQ, Gu YY, Bao CD, Wang Q. Pulmonary hypertension in systemic lupus erythematosus. Rheumatol Int. 1999;18(4):147–51.

    Article  PubMed  CAS  Google Scholar 

  55. Wang H, Cao J, Lai X. Serum interleukin-34 levels are elevated in patients with systemic lupus erythematosus. Molecules (Basel, Switzerland). 2016;22(1):35.

    Article  CAS  Google Scholar 

  56. Crothers K, Huang L, Goulet JL, Goetz MB, Brown ST, Rodriguez-Barradas MC, Oursler KK, Rimland D, Gibert CL, Butt AA, Justice AC. HIV infection and risk for incident pulmonary diseases in the combination antiretroviral therapy era. Am J Respir Crit Care Med. 2011;183(3):388–95.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Frustaci A, Petrosillo N, Vizza D, Francone M, Badagliacca R, Verardo R, Fedele F, Ippolito G, Chimenti C. Myocardial and microvascular inflammation/infection in patients with HIV-associated pulmonary artery hypertension. AIDS (London, England). 2014;28(17):2541–9.

    Article  CAS  Google Scholar 

  58. Ehrenreich H, Rieckmann P, Sinowatz F, Weih KA, Arthur LO, Goebel FD, Burd PR, Coligan JE, Clouse KA. Potent stimulation of monocytic endothelin-1 production by HIV-1 glycoprotein 120. J Immunol (Baltimore, Md.: 1950). 1993;150(10):4601–9.

    Article  CAS  Google Scholar 

  59. Ascherl G, Hohenadl C, Schatz O, Shumay E, Bogner J, Eckhart L, Tschachler E, Monini P, Ensoli B, Stürzl M. Infection with human immunodeficiency virus-1 increases expression of vascular endothelial cell growth factor in T cells: implications for acquired immunodeficiency syndrome-associated vasculopathy. Blood. 1999;93(12):4232–41.

    Article  PubMed  CAS  Google Scholar 

  60. Marecki JC, Cool CD, Parr JE, Beckey VE, Luciw PA, Tarantal AF, Carville A, Shannon RP, Cota-Gomez A, Tuder RM, Voelkel NF, Flores SC. HIV-1 Nef is associated with complex pulmonary vascular lesions in SHIV-nef-infected macaques. Am J Respir Crit Care Med. 2006;174(4):437–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature. 1990;345(6270):84–6.

    Article  PubMed  CAS  Google Scholar 

  62. Liu K, Chi DS, Li C, Hall HK, Milhorn DM, Krishnaswamy G. HIV-1 Tat protein-induced VCAM-1 expression in human pulmonary artery endothelial cells and its signaling. Am J Physiol. Lung Cell Mol Physiol. 2005;289(2):L252–60.

    Article  PubMed  CAS  Google Scholar 

  63. Clouse KA, Cosentino LM, Weih KA, Pyle SW, Robbins PB, Hochstein HD, Natarajan V, Farrar WL. The HIV-1 gp120 envelope protein has the intrinsic capacity to stimulate monokine secretion. J Immunol (Baltimore, Md.: 1950). 1991;147(9):2892–901.

    Article  CAS  Google Scholar 

  64. Graham BB, Kumar R. Schistosomiasis and the pulmonary vasculature (2013 Grover conference series). Pulmon Circul. 2014;4(3):353–62.

    Article  Google Scholar 

  65. Cho W-K, Lee C-M, Kang M-J, Huang Y, Giordano FJ, Lee PJ, Trow TK, Homer RJ, Sessa WC, Elias JA, Lee CG. IL-13 receptor α2-arginase 2 pathway mediates IL-13-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2013;304(2):L112–24.

    Article  PubMed  CAS  Google Scholar 

  66. Graham BB, Chabon J, Gebreab L, Poole J, Debella E, Davis L, Tanaka T, Sanders L, Dropcho N, Bandeira A, Vandivier RW, Champion HC, Butrous G, Wang X-J, Wynn TA, Tuder RM. Transforming growth factor-β signaling promotes pulmonary hypertension caused by Schistosoma mansoni. Circulation. 2013;128(12):1354–64.

    Article  PubMed  CAS  Google Scholar 

  67. Mauad T, Pozzan G, Lanças T, Overbeek MJ, Souza R, Jardim C, Dolhnikoff M, Mello G, Pires-Neto RC, Bernardi FDC, Grünberg K. Immunopathological aspects of schistosomiasis-associated pulmonary arterial hypertension. J Infect. 2014;68(1):90–8.

    Article  PubMed  Google Scholar 

  68. De Almeida MA, Andrade ZA. Effect of chemotherapy on experimental pulmonary schistosomiasis. Am J Trop Med Hygiene. 1983;32(5):1049–54.

    Article  Google Scholar 

  69. Daley E, Emson C, Guignabert C, De Waal Malefyt R, Louten J, Kurup VP, Hogaboam C, Taraseviciene-Stewart L, Voelkel NF, Rabinovitch M, Grunig E, Grunig G. Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med. 2008;205(2):361–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pullamsetti SS, Seeger W, Savai R. Classical IL-6 signaling: a promising therapeutic target for pulmonary arterial hypertension. J Clin Invest. 2018;128(5):1720–3.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hecker M, Zaslona Z, Kwapiszewska G, Niess G, Zakrzewicz A, Hergenreider E, Wilhelm J, Marsh LM, Sedding D, Klepetko W, Lohmeyer J, Dimmeler S, Seeger W, Weissmann N, Schermuly RT, Kneidinger N, Eickelberg O, Morty RE. Dysregulation of the IL-13 receptor system: a novel pathomechanism in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;182(6):805–18.

    Article  PubMed  CAS  Google Scholar 

  72. Marshall JD, Sauler M, Tonelli A, Rao Y, Bucala R, Lee PJ, Fares WH. Complexity of macrophage migration inhibitory factor (MIF) and other angiogenic biomarkers profiling in pulmonary arterial hypertension. Pulm Circ. 2017;7(3):730–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Le Hiress M, Tu L. Proinflammatory signature of the dysfunctional endothelium in pulmonary hypertension. Role of the macrophage migration inhibitory factor/CD74. Complex. 2015;192(8):983–97.

    Google Scholar 

  74. Garfield BE, Crosby A, Shao D, Yang P, Read C, Sawiak S, Moore S, Parfitt L, Harries C, Rice M, Paul R, Ormiston ML, Morrell NW, Polkey MI, Wort SJ, Kemp PR. Growth/differentiation factor 15 causes TGFβ-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension. Thorax. 2019;74(2):164–76.

    Article  PubMed  Google Scholar 

  75. Nie X, Tan J, Dai Y, Liu Y, Zou J, Sun J, Ye S, Shen C, Fan L, Chen J, Bian JS. CCL5 deficiency rescues pulmonary vascular dysfunction, and reverses pulmonary hypertension via caveolin-1-dependent BMPR2 activation. J Mol Cell Cardiol. 2018;116:41–56.

    Article  PubMed  CAS  Google Scholar 

  76. Heresi GA, Aytekin M, Newman J, Dweik RA. CXC-chemokine ligand 10 in idiopathic pulmonary arterial hypertension: marker of improved survival. Lung. 2010;188(3):191–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Mirshahi F, Pourtau J, Li H, Muraine M, Trochon V, Legrand E, Vannier J, Soria J, Vasse M, Soria C. SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res. 2000;99(6):587–94.

    Article  PubMed  CAS  Google Scholar 

  78. Gambaryan N, Perros F, Montani D, Cohen-Kaminsky S, Mazmanian M, Renaud JF, Simonneau G, Lombet A, Humbert M. Targeting of c-kit+ haematopoietic progenitor cells prevents hypoxic pulmonary hypertension. Eur Respir J. 2011;37(6):1392–9.

    Article  PubMed  CAS  Google Scholar 

  79. Balabanian K, Foussat A, Dorfmüller P, Durand-Gasselin I, Capel F, Bouchet-Delbos L, Portier A, Marfaing-Koka A, Krzysiek R, Rimaniol AC, Simonneau G, Emilie D, Humbert M. CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002;165(10):1419–25.

    Article  PubMed  Google Scholar 

  80. Perros F, Dorfmüller P, Souza R, Durand-Gasselin I, Godot V, Capel F, Adnot S, Eddahibi S, Mazmanian M, Fadel E, Hervé P, Simonneau G, Emilie D, Humbert M. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J. 2007;29(5):937–43.

    Article  PubMed  CAS  Google Scholar 

  81. Slifka MK, Whitton JL. Clinical implications of dysregulated cytokine production. J Mol Med (Berl). 2000;78(2):74–80.

    Article  CAS  Google Scholar 

  82. Price LC, Wort SJ, Perros F, Dorfmüller P, Huertas A, Montani D, Cohen-Kaminsky S, Humbert M. Inflammation in pulmonary arterial hypertension. Chest. 2012;141(1):210–21.

    Article  PubMed  CAS  Google Scholar 

  83. Mcglinchey N, Johnson MK. Novel serum biomarkers in pulmonary arterial hypertension. Biomark Med. 2014;8(8):1001–11.

    Article  PubMed  CAS  Google Scholar 

  84. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1):8–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Parpaleix A, Amsellem V, Houssaini A, Abid S, Breau M, Marcos E, Sawaki D, Delcroix M, Quarck R, Maillard A, Couillin I, Ryffel B, Adnot S. Role of interleukin-1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension. Eur Respir J. 2016;48(2):470–83.

    Article  PubMed  CAS  Google Scholar 

  86. Trankle CR, Canada JM, Kadariya D, Markley R, De Chazal HM, Pinson J, Fox A, Van Tassell BW, Abbate A, Grinnan D. IL-1 blockade reduces inflammation in pulmonary arterial hypertension and right ventricular failure: a single-arm, open-label, phase IB/II pilot study. Am J Respir Crit Care Med. 2019;199(3):381–4.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Campos M, Schiopu E. Pulmonary arterial hypertension in Adult-Onset Still’s Disease: rapid response to anakinra. Case Rep Rheumatol. 2012;2012:537613.

    PubMed  PubMed Central  Google Scholar 

  88. Voelkel NF, Tuder RM, Bridges J, Arend WP. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. Am J Respir Cell Mol Biol. 1994;11(6):664–75.

    Article  PubMed  CAS  Google Scholar 

  89. Bui CB, Kolodziej M, Lamanna E, Elgass K, Sehgal A, Rudloff I, Schwenke DO, Tsuchimochi H, Kroon M, Cho SX, Maksimenko A, Cholewa M, Berger PJ, Young MJ, Bourke JE, Pearson JT, Nold MF, Nold-Petry CA. Interleukin-1 receptor antagonist protects newborn mice against pulmonary hypertension. Front Immunol. 2019;10:1480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lawrie A, Hameed AG, Chamberlain J, Arnold N, Kennerley A, Hopkinson K, Pickworth J, Kiely DG, Crossman DC, Francis SE. Paigen diet-fed apolipoprotein E knockout mice develop severe pulmonary hypertension in an interleukin-1-dependent manner. Am J Pathol. 2011;179(4):1693–705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, Sheikh AY, Suen RS, Stewart DJ, Rabinovitch M. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation. 2007;115(10):1275–84.

    Article  PubMed  CAS  Google Scholar 

  92. Pickworth J, Rothman A, Iremonger J, Casbolt H, Hopkinson K, Hickey PM, Gladson S, Shay S, Morrell NW, Francis SE, West JD, Lawrie A. Differential IL-1 signaling induced by BMPR2 deficiency drives pulmonary vascular remodeling. Pulm Circ. 2017;7(4):768–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ross DJ, Strieter RM, Fishbein MC, Ardehali A, Belperio JA. Type I immune response cytokine-chemokine cascade is associated with pulmonary arterial hypertension. J Heart Lung Transplant. 2012;31(8):865–73.

    Article  PubMed  Google Scholar 

  94. Kaya C, Pabuccu R, Berker B, Satiroglu H. Plasma interleukin-18 levels are increased in the polycystic ovary syndrome: relationship of carotid intima-media wall thickness and cardiovascular risk factors. Fertil Steril. 2010;93(4):1200–7.

    Article  PubMed  CAS  Google Scholar 

  95. Takenaka S, Kawayama T, Imaoka H, Sakazaki Y, Oda H, Kaku Y, Matsuoka M, Okamoto M, Kato S, Yamada K, Hoshino T. The progression of comorbidity in IL-18 transgenic chronic obstructive pulmonary disease mice model. Biochem Biophys Res Commun. 2014;445(3):597–601.

    Article  PubMed  CAS  Google Scholar 

  96. Nakamura K, Asano Y, Taniguchi T, Minatsuki S, Inaba T, Maki H, Hatano M, Yamashita T, Saigusa R, Ichimura Y, Takahashi T, Toyama T, Yoshizaki A, Miyagaki T, Sugaya M, Sato S. Serum levels of interleukin-18-binding protein isoform a: clinical association with inflammation and pulmonary hypertension in systemic sclerosis. J Dermatol. 2016;43(8):912–8.

    Article  PubMed  CAS  Google Scholar 

  97. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448–57.

    Article  PubMed  CAS  Google Scholar 

  98. Legg K. Connective tissue diseases: another reason to target IL-6. Nat Rev Rheumatol. 2010;6(2):63.

    Article  PubMed  Google Scholar 

  99. Matura LA, Ventetuolo CE, Palevsky HI, Lederer DJ, Horn EM, Mathai SC, Pinder D, Archer-Chicko C, Bagiella E, Roberts KE, Tracy RP, Hassoun PM, Girgis RE, Kawut SM. Interleukin-6 and tumor necrosis factor-α are associated with quality of life-related symptoms in pulmonary arterial hypertension. Ann Am Thorac Soc. 2015;12(3):370–5.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Jasiewicz M, Knapp M, Waszkiewicz E, Ptaszynska-Kopczynska K, Szpakowicz A, Sobkowicz B, Musial WJ, Kaminski KA. Enhanced IL-6 trans-signaling in pulmonary arterial hypertension and its potential role in disease-related systemic damage. Cytokine. 2015;76(2):187–92.

    Article  PubMed  CAS  Google Scholar 

  101. Von Haehling S, Von Bardeleben RS, Kramm T, Thiermann Y, Niethammer M, Doehner W, Anker SD, Munzel T, Mayer E, Genth-Zotz S. Inflammation in right ventricular dysfunction due to thromboembolic pulmonary hypertension. Int J Cardiol. 2010;144(2):206–11.

    Article  Google Scholar 

  102. Dolenc J, Šebeštjen M, Vrtovec B, Koželj M, Haddad F. Pulmonary hypertension in patients with advanced heart failure is associated with increased levels of interleukin-6. Biomarkers. 2014;19(5):385–90.

    Article  PubMed  CAS  Google Scholar 

  103. Fang M, Huang Y, Zhang Y, Ning Z, Zhu L, Li X. Interleukin-6 -572C/G polymorphism is associated with serum interleukin-6 levels and risk of idiopathic pulmonary arterial hypertension. J Am Soc Hypertens. 2017;11(3):171–7.

    Article  PubMed  CAS  Google Scholar 

  104. Chaouat A, Savale L, Chouaid C, Tu L, Sztrymf B, Canuet M, Maitre B, Housset B, Brandt C, Le Corvoisier P, Weitzenblum E, Eddahibi S, Adnot S. Role for interleukin-6 in COPD-related pulmonary hypertension. Chest. 2009;136(3):678–87.

    Article  PubMed  CAS  Google Scholar 

  105. Hashimoto-Kataoka T, Hosen N, Sonobe T, Arita Y, Yasui T, Masaki T, Minami M, Inagaki T, Miyagawa S, Sawa Y, Murakami M, Kumanogoh A, Yamauchi-Takihara K, Okumura M, Kishimoto T, Komuro I, Shirai M, Sakata Y, Nakaoka Y. Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension. Proc Natl Acad Sci U S A. 2015;112(20):E2677–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Savale L, Tu L, Rideau D, Izziki M, Maitre B, Adnot S, Eddahibi S. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir Res. 2009;10(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Golembeski SM, West J, Tada Y, Fagan KA. Interleukin-6 causes mild pulmonary hypertension and augments hypoxia-induced pulmonary hypertension in mice. Chest. 2005;128(6 Suppl):572s–3s.

    Article  PubMed  Google Scholar 

  108. Ricard N, Tu L, Le Hiress M, Huertas A, Phan C, Thuillet R, Sattler C, Fadel E, Seferian A, Montani D, Dorfmüller P, Humbert M, Guignabert C. Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation. 2014;129(15):1586–97.

    Article  PubMed  CAS  Google Scholar 

  109. Hagen M, Fagan K, Steudel W, Carr M, Lane K, Rodman DM, West J. Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2007;292(6):L1473–9.

    Article  PubMed  CAS  Google Scholar 

  110. Soon E, Crosby A, Southwood M, Yang P, Tajsic T, Toshner M, Appleby S, Shanahan CM, Bloch KD, Pepke-Zaba J, Upton P, Morrell NW. Bone morphogenetic protein receptor type II deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension. Am J Respir Crit Care Med. 2015;192(7):859–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Tamura Y, Phan C, Tu L, Le Hiress M, Thuillet R, Jutant EM, Fadel E, Savale L, Huertas A, Humbert M, Guignabert C. Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension. J Clin Invest. 2018;128(5):1956–70.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Furuya Y, Satoh T, Kuwana M. Interleukin-6 as a potential therapeutic target for pulmonary arterial hypertension. Int J Rheumatol. 2010;2010:720305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Graham BB, Mentink-Kane MM, El-Haddad H, Purnell S, Zhang L, Zaiman A, Redente EF, Riches DW, Hassoun PM, Bandeira A, Champion HC, Butrous G, Wynn TA, Tuder RM. Schistosomiasis-induced experimental pulmonary hypertension: role of interleukin-13 signaling. Am J Pathol. 2010;177(3):1549–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Christmann RB, Hayes E, Pendergrass S, Padilla C, Farina G, Affandi AJ, Whitfield ML, Farber HW, Lafyatis R. Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Rheum. 2011;63(6):1718–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Ferreira Rde C, Montenegro SM, Domingues AL, Bandeira AP, Silveira CA, Leite LA, Pereira Cde A, Fernandes IM, Mertens AB, Almeida MO. TGF beta and IL13 in Schistosomiasis mansoni associated pulmonary arterial hypertension; a descriptive study with comparative groups. BMC Infect Dis. 2014;14:282.

    Article  PubMed  CAS  Google Scholar 

  117. Kumar R, Mickael C, Chabon J, Gebreab L, Rutebemberwa A, Garcia AR, Koyanagi DE, Sanders L, Gandjeva A, Kearns MT, Barthel L, Janssen WJ, Mauad T, Bandeira A, Schmidt E, Tuder RM, Graham BB. The causal role of IL-4 and IL-13 in Schistosoma mansoni pulmonary hypertension. Am J Respir Crit Care Med. 2015;192(8):998–1008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Cho WK, Lee CM, Kang MJ, Huang Y, Giordano FJ, Lee PJ, Trow TK, Homer RJ, Sessa WC, Elias JA, Lee CG. IL-13 receptor α2-arginase 2 pathway mediates IL-13-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2013;304(2):L112–24.

    Article  PubMed  CAS  Google Scholar 

  119. Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003;21:425–56.

    Article  PubMed  CAS  Google Scholar 

  120. Lei Y, Zhen J, Ming XL, Jian HK. Induction of higher expression of IL-beta and TNF-alpha, lower expression of IL-10 and cyclic guanosine monophosphate by pulmonary arterial hypertension following cardiopulmonary bypass. Asian J Surg. 2002;25(3):203–8.

    Article  PubMed  Google Scholar 

  121. Zhu TT, Zhang WF, Yin YL, Liu YH, Song P, Xu J, Zhang MX, Li P. MicroRNA-140-5p targeting tumor necrosis factor-α prevents pulmonary arterial hypertension. J Cell Physiol. 2019;234(6):9535–50.

    Article  PubMed  CAS  Google Scholar 

  122. Fujita M, Mason RJ, Cool C, Shannon JM, Hara N, Fagan KA. Pulmonary hypertension in TNF-alpha-overexpressing mice is associated with decreased VEGF gene expression. J Appl Physiol (1985). 2002;93(6):2162–70.

    Article  CAS  Google Scholar 

  123. Crosswhite P, Chen K, Sun Z. AAV delivery of tumor necrosis factor-α short hairpin RNA attenuates cold-induced pulmonary hypertension and pulmonary arterial remodeling. Hypertension. 2014;64(5):1141–50.

    Article  PubMed  CAS  Google Scholar 

  124. Wang Q, Zuo XR, Wang YY, Xie WP, Wang H, Zhang M. Monocrotaline-induced pulmonary arterial hypertension is attenuated by TNF-α antagonists via the suppression of TNF-α expression and NF-κB pathway in rats. Vasc Pharmacol. 2013;58(1–2):71–7.

    Article  CAS  Google Scholar 

  125. Zhang LL, Lu J, Li MT, Wang Q, Zeng XF. Preventive and remedial application of etanercept attenuate monocrotaline-induced pulmonary arterial hypertension. Int J Rheum Dis. 2016;19(2):192–8.

    Article  PubMed  CAS  Google Scholar 

  126. Mutschler D, Wikström G, Lind L, Larsson A, Lagrange A, Eriksson M. Etanercept reduces late endotoxin-induced pulmonary hypertension in the pig. J Interf Cytokine Res. 2006;26(9):661–7.

    Article  CAS  Google Scholar 

  127. Hurst LA, Dunmore BJ, Long L, Crosby A, Al-Lamki R, Deighton J, Southwood M, Yang X, Nikolic MZ, Herrera B, Inman GJ, Bradley JR, Rana AA, Upton PD. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nat Commun. 2017;8:14079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Günther S, Fagone P, Jalce G, Atanasov AG, Guignabert C, Nicoletti F. Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discov Today. 2019;24(2):428–39.

    Article  PubMed  CAS  Google Scholar 

  129. Dubrock HM, Rodriguez-Lopez JM, Levarge BL, Curry MP, Vanderlaan PA, Zsengeller ZK, Pernicone E, Preston IR, Yu PB, Nikolic I, Xu D, Thadhani RI, Channick RN, Ananth Karumanchi S. Macrophage migration inhibitory factor as a novel biomarker of portopulmonary hypertension. Pulm Circ. 2016;6(4):498–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Stefanantoni K, Sciarra I, Vasile M, Badagliacca R, Poscia R, Pendolino M, Alessandri C, Vizza CD, Valesini G, Riccieri V. Elevated serum levels of macrophage migration inhibitory factor and stem cell growth factor β in patients with idiopathic and systemic sclerosis associated pulmonary arterial hypertension. Reumatismo. 2015;66(4):270–6.

    Article  PubMed  CAS  Google Scholar 

  131. Huang H, Chen D, Pu J, Yuan A, Fu Q, Li J, Leng L, Bucala R, Ye S, Lu L. The small molecule macrophage migration inhibitory factor antagonist MIF098, inhibits pulmonary hypertension associated with murine SLE. Int Immunopharmacol. 2019;76:105874.

    Article  PubMed  CAS  Google Scholar 

  132. Le Hiress M, Akagah B, Bernadat G, Tu L, Thuillet R, Huertas A, Phan C, Fadel E, Simonneau G, Humbert M, Jalce G, Guignabert C. Design, synthesis, and biological activity of new N-(Phenylmethyl)-benzoxazol-2-thiones as macrophage migration inhibitory factor (MIF) antagonists: efficacies in experimental pulmonary. Hypertension. 2018;61(7):2725–36.

    Google Scholar 

  133. Zhang B, Luo Y, Liu ML, Wang J, Xu DQ, Dong MQ, Liu Y, Xu M, Dong HY, Zhao PT, Gao YQ, Li ZC. Macrophage migration inhibitory factor contributes to hypoxic pulmonary vasoconstriction in rats. Microvasc Res. 2012;83(2):205–12.

    Article  PubMed  CAS  Google Scholar 

  134. Zhang Y, Talwar A, Tsang D, Bruchfeld A, Sadoughi A, Hu M, Omonuwa K, Cheng KF, Al-Abed Y, Miller EJ. Macrophage migration inhibitory factor mediates hypoxia-induced pulmonary hypertension. Mol Med. 2012;18(1):215–23.

    Article  PubMed  CAS  Google Scholar 

  135. Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, Walsh BJ, Nicholson RC, Fairlie WD, Por SB, Robbins JM, Breit SN. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci U S A. 1997;94(21):11514–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Bella AJ, Lin G, Lin CS, Hickling DR, Morash C, Lue TF. Nerve growth factor modulation of the cavernous nerve response to injury. J Sex Med. 2009;6(Suppl 3):347–52.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zimmers TA, Jin X, Hsiao EC, Perez EA, Pierce RH, Chavin KD, Koniaris LG. Growth differentiation factor-15: induction in liver injury through p53 and tumor necrosis factor-independent mechanisms. J Surg Res. 2006;130(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  138. Zimmers TA, Jin X, Hsiao EC, Mcgrath SA, Esquela AF, Koniaris LG. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock. 2005;23(6):543–8.

    PubMed  CAS  Google Scholar 

  139. Nickel N, Kempf T, Tapken H, Tongers J, Laenger F, Lehmann U, Golpon H, Olsson K, Wilkins MR, Gibbs JS, Hoeper MM, Wollert KC. Growth differentiation factor-15 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178(5):534–41.

    Article  PubMed  CAS  Google Scholar 

  140. Geenen LW, VJM B, Kauling RM, Koudstaal T, Boomars KA, Boersma E. Growth differentiation factor-15 as candidate predictor for mortality in adults with pulmonary hypertension. Heart (British Cardiac Society). 2020;106(6):467–73.

    CAS  Google Scholar 

  141. Meadows CA, Risbano MG, Zhang L, Geraci MW, Tuder RM, Collier DH, Bull TM. Increased expression of growth differentiation factor-15 in systemic sclerosis-associated pulmonary arterial hypertension. Chest. 2011;139(5):994–1002.

    Article  PubMed  Google Scholar 

  142. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12(2):121–7.

    Article  PubMed  CAS  Google Scholar 

  143. Mamazhakypov A, Viswanathan G. The role of chemokines and chemokine receptors in pulmonary arterial hypertension. Br J Pharmacol. 2019; https://doi.org/10.1111/bph.14826.

  144. Matsushima K, Larsen CG, Dubois GC, Oppenheim JJ. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 1989;169(4):1485–90.

    Article  PubMed  CAS  Google Scholar 

  145. Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J. 2018;285(16):2944–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Li M, Riddle SR, Frid MG, El Kasmi KC, Mckinsey TA, Sokol RJ, Strassheim D, Meyrick B, Yeager ME, Flockton AR, Mckeon BA, Lemon DD, Horn TR, Anwar A, Barajas C, Stenmark KR. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol. 2011;187(5):2711–22.

    Article  PubMed  CAS  Google Scholar 

  147. Li M, Scott DE, Shandas R, Stenmark KR, Tan W. High pulsatility flow induces adhesion molecule and cytokine mRNA expression in distal pulmonary artery endothelial cells. Ann Biomed Eng. 2009;37(6):1082–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Park JE, Lyon AR, Shao D, Hector LR, Xu H, O’gara P, Pinhu L, Chambers RC, Wort SJ, Griffiths MJ. Pulmonary venous hypertension and mechanical strain stimulate monocyte chemoattractant protein-1 release and structural remodelling of the lung in human and rodent chronic heart failure models. Thorax. 2014;69(12):1120–7.

    Article  PubMed  Google Scholar 

  149. Ikeda Y, Yonemitsu Y, Kataoka C, Kitamoto S, Yamaoka T, Nishida K, Takeshita A, Egashira K, Sueishi K. Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol. 2002;283(5):H2021–8.

    Article  PubMed  CAS  Google Scholar 

  150. Amsellem V, Abid S, Poupel L, Parpaleix A, Rodero M, Gary-Bobo G, Latiri M, Dubois-Rande JL, Lipskaia L, Combadiere C, Adnot S. Roles for the CX3CL1/CX3CR1 and CCL2/CCR2 chemokine systems in hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol. 2017;56(5):597–608.

    Article  PubMed  CAS  Google Scholar 

  151. Yu YR, Mao L, Piantadosi CA, Gunn MD. CCR2 deficiency, dysregulation of Notch signaling, and spontaneous pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2013;48(5):647–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Florentin J, Coppin E, Vasamsetti SB, Zhao J, Tai YY. Inflammatory macrophage expansion in pulmonary hypertension depends upon mobilization of blood-borne monocytes. J Immunol. 2018;200(10):3612–25.

    Article  PubMed  CAS  Google Scholar 

  153. Schecter AD, Berman AB, Taubman MB. Chemokine receptors in vascular smooth muscle. Microcirculation. 2003;10(3–4):265–72.

    Article  PubMed  CAS  Google Scholar 

  154. Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine receptor signaling and the hallmarks of cancer. Int Rev Cell Mol Biol. 2017;331:181–244.

    Article  PubMed  CAS  Google Scholar 

  155. Schall TJ. Biology of the RANTES/SIS cytokine family. Cytokine. 1991;3(3):165–83.

    Article  PubMed  CAS  Google Scholar 

  156. Price LC, Caramori G, Perros F, Meng C, Gambaryan N, Dorfmuller P, Montani D, Casolari P, Zhu J, Dimopoulos K, Shao D, Girerd B, Mumby S, Proudfoot A, Griffiths M, Papi A, Humbert M, Adcock IM, Wort SJ. Nuclear factor κ-B is activated in the pulmonary vessels of patients with end-stage idiopathic pulmonary arterial hypertension. PLoS One. 2013;8(10):e75415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Amsellem V, Lipskaia L, Abid S, Poupel L, Houssaini A, Quarck R, Marcos E, Mouraret N, Parpaleix A, Bobe R, Gary-Bobo G, Saker M, Dubois-Randé JL, Gladwin MT, Norris KA, Delcroix M, Combadière C, Adnot S. CCR5 as a treatment target in pulmonary arterial hypertension. Circulation. 2014;130(11):880–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Dorfmüller P, Chaumais MC, Giannakouli M, Durand-Gasselin I, Raymond N, Fadel E, Mercier O, Charlotte F, Montani D, Simonneau G, Humbert M, Perros F. Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension. Respir Res. 2011;12(1):119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Otsuki S, Sawada H, Yodoya N, Shinohara T, Kato T, Ohashi H, Zhang E, Imanaka-Yoshida K, Shimpo H, Maruyama K, Komada Y, Mitani Y. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS One. 2015;10(2):e0118655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Yamaji-Kegan K, Takimoto E, Zhang A, Weiner NC, Meuchel LW, Berger AE, Cheadle C, Johns RA. Hypoxia-induced mitogenic factor (FIZZ1/RELMα) induces endothelial cell apoptosis and subsequent interleukin-4-dependent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2014;306(12):L1090–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Molet S, Furukawa K, Maghazechi A, Hamid Q, Giaid A. Chemokine- and cytokine-induced expression of endothelin 1 and endothelin-converting enzyme 1 in endothelial cells. J Allergy Clin Immunol. 2000;105(2 Pt 1):333–8.

    Article  PubMed  CAS  Google Scholar 

  162. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–31.

    Article  PubMed  CAS  Google Scholar 

  163. Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12. Cell Mol Immunol. 2018;15(4):299–311.

    Article  PubMed  CAS  Google Scholar 

  164. Nervi B, Link DC, Dipersio JF. Cytokines and hematopoietic stem cell mobilization. J Cell Biochem. 2006;99(3):690–705.

    Article  PubMed  CAS  Google Scholar 

  165. Suratt BT, Petty JM, Young SK, Malcolm KC, Lieber JG, Nick JA, Gonzalo JA, Henson PM, Worthen GS. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood. 2004;104(2):565–71.

    Article  PubMed  CAS  Google Scholar 

  166. Goedhart M, Gessel S, Van Der Voort R, Slot E, Lucas B, Gielen E, Hoogenboezem M, Rademakers T, Geerman S, Van Buul JD, Huveneers S, Dolstra H, Anderson G. CXCR4, but not CXCR3, drives CD8(+) T-cell entry into and migration through the murine bone marrow. Eur J Immunol. 2019;49(4):576–89.

    Article  PubMed  CAS  Google Scholar 

  167. Yu L, Hales CA. Effect of chemokine receptor CXCR4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Respir Res. 2011;12(1):21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Zernecke A, Schober A, Bot I, Von Hundelshausen P, Liehn EA, Möpps B, Mericskay M, Gierschik P, Biessen EA, Weber C. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res. 2005;96(7):784–91.

    Article  PubMed  CAS  Google Scholar 

  169. Farkas D, Kraskauskas D, Drake JI, Alhussaini AA, Kraskauskiene V, Bogaard HJ, Cool CD, Voelkel NF, Farkas L. CXCR4 inhibition ameliorates severe obliterative pulmonary hypertension and accumulation of C-kit+ cells in rats. PLoS One. 2014;9(2):e89810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Kishimoto Y, Kato T, Ito M, Azuma Y, Fukasawa Y, Ohno K, Kojima S. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects. J Thorac Cardiovasc Surg. 2015;150(3):645–54.

    Article  PubMed  CAS  Google Scholar 

  171. Dai Z, Li M, Wharton J, Zhu MM, Zhao Y-Y. Prolyl-4 hydroxylase 2 (PHD2) deficiency in endothelial cells and hematopoietic cells induces obliterative vascular remodeling and severe pulmonary arterial hypertension in mice and humans through hypoxia-inducible factor-2α. Circulation. 2016;133(24):2447–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Mccullagh BN, Costello CM, Li L, O’connell C, Codd M, Lawrie A, Morton A, Kiely DG, Condliffe R, Elliot C, Mcloughlin P, Gaine S. Elevated plasma CXCL12α is associated with a poorer prognosis in pulmonary arterial hypertension. PLoS One. 2015;10(4):e0123709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Yang T, Li ZN, Chen G, Gu Q, Ni XH, Zhao ZH, Ye J, Meng XM, Liu ZH, Xiong CM, He JG. Increased levels of plasma CXC-Chemokine Ligand 10, 12 and 16 are associated with right ventricular function in patients with idiopathic pulmonary arterial hypertension. Heart Lung. 2014;43(4):322–7.

    Article  PubMed  Google Scholar 

  174. Bordenave J, Thuillet R, Tu L, Phan C, Cumont A, Marsol C, Huertas A, Savale L, Hibert M, Galzi JL, Bonnet D, Humbert M, Frossard N, Guignabert C. Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. Cardiovasc Res. 2020;116(3):686–97.

    Article  PubMed  CAS  Google Scholar 

  175. Huang X, Mao W, Zhang T, Wang M, Wang X, Li Y, Zhang L, Yao D, Cai X, Wang L. Baicalin promotes apoptosis and inhibits proliferation and migration of hypoxia-induced pulmonary artery smooth muscle cells by up-regulating A2a receptor via the SDF-1/CXCR4 signaling pathway. BMC Complement Altern Med. 2018;18(1):330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Yin T, Bader AR, Hou TK, Maron BA, Kao DD, Qian R, Kohane DS, Handy DE, Loscalzo J, Zhang YY. SDF-1α in glycan nanoparticles exhibits full activity and reduces pulmonary hypertension in rats. Biomacromolecules. 2013;14(11):4009–20.

    Article  PubMed  CAS  Google Scholar 

  177. Wei L, Zhang B, Cao W, Xing H, Yu X, Zhu D. Inhibition of CXCL12/CXCR4 suppresses pulmonary arterial smooth muscle cell proliferation and cell cycle progression via PI3K/Akt pathway under hypoxia. J Recept Signal Transduct Res. 2015;35(4):329–39.

    Article  PubMed  CAS  Google Scholar 

  178. Young KC, Torres E, Hatzistergos KE, Hehre D, Suguihara C, Hare JM. Inhibition of the SDF-1/CXCR4 axis attenuates neonatal hypoxia-induced pulmonary hypertension. Circ Res. 2009;104(11):1293–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Kazimierczyk R, Blaszczak P, Jasiewicz M, Knapp M, Ptaszynska-Kopczynska K, Sobkowicz B, Waszkiewicz E, Grzywna R, Musial WJ, Kaminski KA. Increased platelet content of SDF-1alpha is associated with worse prognosis in patients with pulmonary prterial hypertension. Platelets. 2019;30(4):445–51.

    Article  PubMed  CAS  Google Scholar 

  180. Toshner M, Voswinckel R, Southwood M, Al-Lamki R, Howard LS, Marchesan D, Yang J, Suntharalingam J, Soon E, Exley A, Stewart S, Hecker M, Zhu Z, Gehling U, Seeger W, Pepke-Zaba J, Morrell NW. Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2009;180(8):780–7.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Huang X, Wu P, Huang F, Xu M, Chen M, Huang K, Li GP, Xu M, Yao D, Wang L. Baicalin attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A(2A) receptor-induced SDF-1/CXCR4/PI3K/AKT signaling. J Biomed Sci. 2017;24(1):52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Jie W, Wang X, Huang L, Guo J, Kuang D, Zhu P, Li M, Zhao X, Duan Y, Wang G, Ao Q. Contribution of CXCR4(+)/PDGFRbeta(+) progenitor cells in hypoxic alveolar arterioles muscularization: role of myocardin. Cardiovasc Res. 2010;87(4):740–50.

    Article  PubMed  CAS  Google Scholar 

  183. Costello CM, Mccullagh B, Howell K, Sands M, Belperio JA, Keane MP, Gaine S, Mcloughlin P. A role for the CXCL12 receptor, CXCR7, in the pathogenesis of human pulmonary vascular disease. Eur Respir J. 2012;39(6):1415–24.

    Article  PubMed  CAS  Google Scholar 

  184. Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP, Gerard C, Lefkowitz RJ. Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc Natl Acad Sci U S A. 2010;107(2):628–32.

    Article  PubMed  Google Scholar 

  185. Sartina E, Suguihara C, Ramchandran S, Nwajei P, Rodriguez M, Torres E, Hehre D, Devia C, Walters MJ, Penfold ME, Young KC. Antagonism of CXCR7 attenuates chronic hypoxia-induced pulmonary hypertension. Pediatr Res. 2012;71(6):682–8.

    Article  PubMed  CAS  Google Scholar 

  186. Liu W, Jiang L, Bian C, Liang Y, Xing R, Yishakea M, Dong J. Role of CX3CL1 in diseases. Arch Immunol Ther Exp. 2016;64(5):371–83.

    Article  CAS  Google Scholar 

  187. Humbert M. Mediators involved in HIV-related pulmonary arterial hypertension. Aids. 2008;22(Suppl 3):S41–7.

    Article  PubMed  CAS  Google Scholar 

  188. Zhang J, Hu H, Palma NL, Harrison JK, Mubarak KK, Carrie RD, Alnuaimat H, Shen X, Luo D, Patel JM. Hypoxia-induced endothelial CX3CL1 triggers lung smooth muscle cell phenotypic switching and proliferative expansion. Am J Physiol Lung Cell Mol Physiol. 2012;303(10):L912–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Chen XJ, Cheng DY, Yang L, Xia XQ. The change of fractalkine in serum and pulmonary arterioles of hypoxic rat. Sichuan Da Xue Xue Bao Yi Xue Ban. 2007;38(5):756–60.

    PubMed  CAS  Google Scholar 

  190. Yang XP, Mattagajasingh S, Su S, Chen G, Cai Z, Fox-Talbot K, Irani K, Becker LC. Fractalkine upregulates intercellular adhesion molecule-1 in endothelial cells through CX3CR1 and the Jak Stat5 pathway. Circ Res. 2007;101(10):1001–8.

    Article  PubMed  CAS  Google Scholar 

  191. Tamosiuniene R, Tian W, Dhillon G, Wang L, Sung YK, Gera L, Patterson AJ, Agrawal R, Rabinovitch M, Ambler K, Long CS, Voelkel NF, Nicolls MR. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension. Circ Res. 2011;109(8):867–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Tamosiuniene R, Manouvakhova O, Mesange P, Saito T, Qian J, Sanyal M, Lin YC, Nguyen LP, Luria A, Tu AB, Sante JM, Rabinovitch M, Fitzgerald DJ, Graham BB, Habtezion A, Voelkel NF, Aurelian L, Nicolls MR. Dominant role for regulatory T cells in protecting females against pulmonary hypertension. Circ Res. 2018;122(12):1689–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Miyata M, Sakuma F, Ito M, Ohira H, Sato Y, Kasukawa R. Athymic nude rats develop severe pulmonary hypertension following monocrotaline administration. Int Arch Allergy Immunol. 2000;121(3):246–52.

    Article  PubMed  CAS  Google Scholar 

  194. Maston LD, Jones DT, Giermakowska W, Howard TA, Cannon JL, Wang W, Wei Y, Xuan W, Resta TC, Gonzalez Bosc LV. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L609–l624.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kumar R, Mickael C, Kassa B, Sanders L, Koyanagi D, Hernandez-Saavedra D, Freeman S, Morales-Cano D, Cogolludo A, Mckee AS, Fontenot AP, Butrous G, Tuder RM, Graham BB. Th2 CD4(+) T cells are necessary and sufficient for schistosoma-pulmonary hypertension. J Am Heart Assoc. 2019;8(15):e013111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Ulrich S, Nicolls MR, Taraseviciene L, Speich R, Voelkel N. Increased regulatory and decreased CD8+ cytotoxic T cells in the blood of patients with idiopathic pulmonary arterial hypertension. Respiration. 2008;75(3):272–80.

    Article  PubMed  CAS  Google Scholar 

  197. Nunes JPL, Cunha AC, Meirinhos T, Nunes A, Araújo PM, Godinho AR, Vilela EM, Vaz C. Prevalence of auto-antibodies associated to pulmonary arterial hypertension in scleroderma – a review. Autoimmun Rev. 2018;17(12):1186–201.

    Google Scholar 

  198. Liu XD, Guo SY, Yang LL, Zhang XL, Fu WY, Wang XF. Anti-endothelial cell antibodies in connective tissue diseases associated with pulmonary arterial hypertension. J Thorac Dis. 2014;6(5):497–502.

    PubMed  PubMed Central  Google Scholar 

  199. Ulrich S, Taraseviciene-Stewart L, Huber LC, Speich R, Voelkel N. Peripheral blood B lymphocytes derived from patients with idiopathic pulmonary arterial hypertension express a different RNA pattern compared with healthy controls: a cross sectional study. Respir Res. 2008;9(1):20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Savai R, Pullamsetti SS, Kolbe J, Bieniek E, Voswinckel R, Fink L, Scheed A, Ritter C, Dahal BK, Vater A, Klussmann S, Ghofrani HA, Weissmann N, Klepetko W, Banat GA, Seeger W, Grimminger F, Schermuly RT. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(9):897–908.

    Article  PubMed  CAS  Google Scholar 

  201. Wang W, Yan H, Zhu W, Cui Y, Chen J, Wang X, Li S, Zhu J. Impairment of monocyte-derived dendritic cells in idiopathic pulmonary arterial hypertension. J Clin Immunol. 2009;29(6):705–13.

    Article  PubMed  CAS  Google Scholar 

  202. Quarck R, Wynants M, Verbeken E, Meyns B, Delcroix M. Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. Eur Respir J. 2015;46(2):431–43.

    Article  PubMed  CAS  Google Scholar 

  203. Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, Van Rooijen N, Stenmark KR. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol. 2006;168(2):659–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Ee MT, Kantores C, Ivanovska J, Wong MJ, Jain A, Jankov RP. Leukotriene B4 mediates macrophage influx and pulmonary hypertension in bleomycin-induced chronic neonatal lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;311(2):L292–302.

    Article  PubMed  Google Scholar 

  205. Žaloudíková M, Vytášek R, Vajnerová O, Hniličková O, Vízek M, Hampl V, Herget J. Depletion of alveolar macrophages attenuates hypoxic pulmonary hypertension but not hypoxia-induced increase in serum concentration of MCP-1. Physiol Res. 2016;65(5):763–8.

    Article  PubMed  Google Scholar 

  206. Stenmark KR, Tuder RM, El Kasmi KC. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension. J Appl Physiol (1985). 2015;119(10):1164–72.

    Article  CAS  Google Scholar 

  207. El Kasmi KC, Pugliese SC, Riddle SR, Poth JM, Anderson AL, Frid MG, Li M, Pullamsetti SS, Savai R, Nagel MA, Fini MA, Graham BB, Tuder RM, Friedman JE, Eltzschig HK, Sokol RJ, Stenmark KR. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J Immunol. 2014;193(2):597–609.

    Article  PubMed  CAS  Google Scholar 

  208. Haas F, Bergofsky EH. Role of the mast cell in the pulmonary pressor response to hypoxia. J Clin Invest. 1972;51(12):3154–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Vajner L, Vytásek R, Lachmanová V, Uhlík J, Konrádová V, Novotná J, Hampl V, Herget J. Acute and chronic hypoxia as well as 7-day recovery from chronic hypoxia affects the distribution of pulmonary mast cells and their MMP-13 expression in rats. Int J Exp Pathol. 2006;87(5):383–91.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Maxová H, Herget J, Vízek M. Lung mast cells and hypoxic pulmonary hypertension. Physiol Res. 2012;61(1):1–11.

    Article  PubMed  Google Scholar 

  211. Kosanovic D, Dahal BK, Peters DM, Seimetz M, Wygrecka M, Hoffmann K, Antel J, Reiss I, Ghofrani HA, Weissmann N, Grimminger F, Seeger W, Schermuly RT. Histological characterization of mast cell chymase in patients with pulmonary hypertension and chronic obstructive pulmonary disease. Pulm Circ. 2014;4(1):128–36.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Montani D, Perros F, Gambaryan N, Girerd B, Dorfmuller P, Price LC, Huertas A, Hammad H, Lambrecht B, Simonneau G, Launay JM, Cohen-Kaminsky S, Humbert M. C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;184(1):116–23.

    Article  PubMed  Google Scholar 

  213. Davie NJ, Crossno JT, Frid MG, Hofmeister SE, Reeves JT, Hyde DM, Carpenter TC, Brunetti JA, Mcniece IK, Stenmark KR. Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L668–78.

    Article  PubMed  CAS  Google Scholar 

  214. Crossno JT Jr, Garat CV, Reusch JE, Morris KG, Dempsey EC, Mcmurtry IF, Stenmark KR, Klemm DJ. Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol. 2007;292(4):L885–97.

    Article  PubMed  CAS  Google Scholar 

  215. Banasová A, Maxová H, Hampl V, Vízek M, Povýsilová V, Novotná J, Vajnerová O, Hnilicková O, Herget J. Prevention of mast cell degranulation by disodium cromoglycate attenuates the development of hypoxic pulmonary hypertension in rats exposed to chronic hypoxia. Respiration. 2008;76(1):102–7.

    Article  PubMed  Google Scholar 

  216. Dahal BK, Kosanovic D, Kaulen C, Cornitescu T, Savai R, Hoffmann J, Reiss I, Ghofrani HA, Weissmann N, Kuebler WM, Seeger W, Grimminger F, Schermuly RT. Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats. Respir Res. 2011;12(1):60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Hoffmann J, Yin J, Kukucka M, Yin N, Saarikko I, Sterner-Kock A, Fujii H, Leong-Poi H, Kuppe H, Schermuly RT, Kuebler WM. Mast cells promote lung vascular remodelling in pulmonary hypertension. Eur Respir J. 2011;37(6):1400–10.

    Article  PubMed  CAS  Google Scholar 

  218. Wang T, Han SX, Zhang SF, Ning YY, Chen L, Chen YJ, He GM, Xu D, An J, Yang T, Zhang XH, Wen FQ. Role of chymase in cigarette smoke-induced pulmonary artery remodeling and pulmonary hypertension in hamsters. Respir Res. 2010;11(1):36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Kwapiszewska G, Markart P, Dahal BK, Kojonazarov B, Marsh LM, Schermuly RT, Taube C, Meinhardt A, Ghofrani HA, Steinhoff M, Seeger W, Preissner KT, Olschewski A, Weissmann N, Wygrecka M. PAR-2 inhibition reverses experimental pulmonary hypertension. Circ Res. 2012;110(9):1179–91.

    Article  PubMed  CAS  Google Scholar 

  220. Frangogiannis NG. Fibroblasts and the extracellular matrix in right ventricular disease. Cardiovasc Res. 2017;113(12):1453–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Terrier B, Tamby MC, Camoin L, Guilpain P, Broussard C, Bussone G, Yaïci A, Hotellier F, Simonneau G, Guillevin L, Humbert M, Mouthon L. Identification of target antigens of antifibroblast antibodies in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;177(10):1128–34.

    Article  PubMed  CAS  Google Scholar 

  222. Dib H, Tamby MC, Bussone G, Regent A, Berezné A, Lafine C, Broussard C, Simonneau G, Guillevin L, Witko-Sarsat V, Humbert M, Mouthon L. Targets of anti-endothelial cell antibodies in pulmonary hypertension and scleroderma. Eur Respir J. 2012;39(6):1405–14.

    Article  PubMed  CAS  Google Scholar 

  223. Voelkel NF, Tamosiuniene R, Nicolls MR. Challenges and opportunities in treating inflammation associated with pulmonary hypertension. Expert Rev Cardiovasc Ther. 2016;14(8):939–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Pignone A, Scaletti C, Matucci-Cerinic M, Vázquez-Abad D, Meroni PL, Del Papa N, Falcini F, Generini S, Rothfield N, Cagnoni M. Anti-endothelial cell antibodies in systemic sclerosis: significant association with vascular involvement and alveolo-capillary impairment. Clin Exp Rheumatol. 1998;16(5):527–32.

    PubMed  CAS  Google Scholar 

  225. Hamidi SA, Lin RZ, Szema AM, Lyubsky S, Jiang YP, Said SI. VIP and endothelin receptor antagonist: an effective combination against experimental pulmonary arterial hypertension. Respir Res. 2011;12(1):141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Said SI, Hamidi SA, Dickman KG, Szema AM, Lyubsky S, Lin RZ, Jiang YP, Chen JJ, Waschek JA, Kort S. Moderate pulmonary arterial hypertension in male mice lacking the vasoactive intestinal peptide gene. Circulation. 2007;115(10):1260–8.

    Article  PubMed  CAS  Google Scholar 

  227. Petkov V, Mosgoeller W, Ziesche R, Raderer M, Stiebellehner L, Vonbank K, Funk GC, Hamilton G, Novotny C, Burian B, Block LH. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest. 2003;111(9):1339–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Leuchte HH, Baezner C, Baumgartner RA, Bevec D, Bacher G, Neurohr C, Behr J. Inhalation of vasoactive intestinal peptide in pulmonary hypertension. Eur Respir J. 2008;32(5):1289–94.

    Article  PubMed  CAS  Google Scholar 

  229. Sobanski V, Launay D, Hachulla E, Humbert M. Current approaches to the treatment of systemic-sclerosis-associated pulmonary arterial hypertension (SSc-PAH). Curr Rheumatol Rep. 2016;18(2):10.

    Article  PubMed  CAS  Google Scholar 

  230. Meloche J, Renard S, Provencher S, Bonnet S. Anti-inflammatory and immunosuppressive agents in PAH. Handb Exp Pharmacol. 2013;218:437–76.

    Article  PubMed  CAS  Google Scholar 

  231. Alten R, Maleitzke T. Tocilizumab: a novel humanized anti-interleukin 6 (IL-6) receptor antibody for the treatment of patients with non-RA systemic, inflammatory rheumatic diseases. Ann Med. 2013;45(4):357–63.

    Article  PubMed  CAS  Google Scholar 

  232. Nishimoto N, Terao K, Mima T, Nakahara H, Takagi N, Kakehi T. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood. 2008;112(10):3959–64.

    Article  PubMed  CAS  Google Scholar 

  233. Arita Y, Sakata Y, Sudo T, Maeda T, Matsuoka K, Tamai K, Higuchi K, Shioyama W, Nakaoka Y, Kanakura Y, Yamauchi-Takihara K. The efficacy of tocilizumab in a patient with pulmonary arterial hypertension associated with Castleman’s disease. Heart Vessel. 2010;25(5):444–7.

    Article  Google Scholar 

  234. Hernández-Sánchez J, Harlow L, Church C, Gaine S, Knightbridge E, Bunclark K, Gor D, Bedding A, Morrell N, Corris P, Toshner M. Clinical trial protocol for TRANSFORM-UK: a therapeutic open-label study of tocilizumab in the treatment of pulmonary arterial hypertension. Pulm Circ. 2018;8(1):2045893217735820.

    Article  CAS  PubMed  Google Scholar 

  235. Halloran PF. Molecular mechanisms of new immunosuppressants. Clin Transpl. 1996;10(1 Pt 2):118–23.

    CAS  Google Scholar 

  236. Kahan BD. Sirolimus-based immunosuppression: present state of the art. J Nephrol. 2004;17(Suppl 8):S32–9.

    PubMed  CAS  Google Scholar 

  237. Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnàr F, Falotico R. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346(23):1773–80.

    Article  PubMed  CAS  Google Scholar 

  238. Ma X, Yao J, Yue Y, Du S, Qin H, Hou J, Wu Z. Rapamycin reduced pulmonary vascular remodelling by inhibiting cell proliferation via Akt/mTOR signalling pathway down-regulation in the carotid artery-jugular vein shunt pulmonary hypertension rat model. Interact Cardiovasc Thorac Surg. 2017;25(2):206–11.

    Article  PubMed  Google Scholar 

  239. Nishimura T, Faul JL, Berry GJ, Veve I, Pearl RG, Kao PN. 40-O-(2-hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med. 2001;163(2):498–502.

    Article  PubMed  CAS  Google Scholar 

  240. Houssaini A, Abid S, Mouraret N, Wan F, Rideau D, Saker M, Marcos E, Tissot CM, Dubois-Randé JL, Amsellem V, Adnot S. Rapamycin reverses pulmonary artery smooth muscle cell proliferation in pulmonary hypertension. Am J Respir Cell Mol Biol. 2013;48(5):568–77.

    Article  PubMed  CAS  Google Scholar 

  241. Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N. mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer. 2007;96(Suppl):R11–5.

    PubMed  Google Scholar 

  242. Zou Z, Chen J, Yang J, Bai X. Targeted inhibition of rictor/mTORC2 in cancer treatment: a new era after rapamycin. Curr Cancer Drug Targets. 2016;16(4):288–304.

    Article  PubMed  CAS  Google Scholar 

  243. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Tang H, Wu K, Wang J, Vinjamuri S, Gu Y, Song S, Wang Z, Zhang Q, Balistrieri A, Ayon RJ, Rischard F, Vanderpool R, Chen J, Zhou G, Desai AA, Black SM, Garcia JGN, Yuan JX, Makino A. Pathogenic role of mTORC1 and mTORC2 in pulmonary hypertension. JACC Basic Transl Sci. 2018;3(6):744–62.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Ranchoux B, Nadeau V, Bourgeois A, Provencher S, Tremblay OJ, Coté N, Abu-Alhayja’a R, Dumais V, Nachbar RT, Tastet L, Dahou A, Breuils-Bonnet S, Marette A, Pibarot P, Dupuis J, Paulin R, Boucherat O, Archer SL, Bonnet S, Potus F. Metabolic syndrome exacerbates pulmonary hypertension due to left heart disease. Circ Res. 2019;125(4):449–66.

    Article  PubMed  CAS  Google Scholar 

  246. Günther S, Bordenave J, Hua-Huy T. Macrophage Migration Inhibitory Factor (MIF) inhibition in a murine model of bleomycin-induced pulmonary fibrosis. Int J Mol Sci. 2018;19(12):4105.

    Article  PubMed Central  Google Scholar 

  247. Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol. 2015;308(3):L229–52.

    Article  PubMed  CAS  Google Scholar 

  248. Humbert M. Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: pathophysiology. Eur Respir Rev. 2010;19(115):59–63.

    Article  PubMed  CAS  Google Scholar 

  249. Kuse N, Abe S, Kuribayashi H, Fukuda A, Kusunoki Y, Narato R, Saito H, Gemma A. Chronic thromboembolic pulmonary hypertension associated with chronic inflammation. Intern Med. 2016;55(11):1471–6.

    Article  PubMed  CAS  Google Scholar 

  250. Hassoun PM. Inflammation in chronic thromboembolic pulmonary hypertension:accomplice or bystander in altered angiogenesis? Eur Respir J. 2015;46(2):303–6.

    Article  PubMed  Google Scholar 

  251. Kimura H, Okada O, Tanabe N, Tanaka Y, Terai M, Takiguchi Y, Masuda M, Nakajima N, Hiroshima K, Inadera H, Matsushima K, Kuriyama T. Plasma monocyte chemoattractant protein-1 and pulmonary vascular resistance in chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2001;164(2):319–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, S., Desai, A.A., Black, S.M., Tang, H. (2021). Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume I. Advances in Experimental Medicine and Biology, vol 1303. Springer, Cham. https://doi.org/10.1007/978-3-030-63046-1_15

Download citation

Publish with us

Policies and ethics