Skip to main content

Advertisement

Log in

Role of CX3CL1 in Diseases

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Chemokines are a family of small 8–10 kDa inducible cytokines. Initially characterized as chemotactic factors, they are now considered to affect not just cellular recruitment. CX3CL1 is a unique chemokine that can exist in a soluble form, as a chemotactic cytokine, or in a membrane-attached form that acts as a binding molecule. Recently, the effects of CX3CL1 on diseases, such as inflammation and cancer, have been supported and confirmed by numerous publications. However, due to its dual effects, CX3CL1 exerts numerous effects on pathophysiological conditions that have both negative and positive consequences on pathogenesis and outcome. This review article summarizes the important scientific and clinical data that now point to a critical role for CX3CL1 in diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andre F, Cabioglu N, Assi H et al (2006) Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol 17:945–951

    Article  CAS  PubMed  Google Scholar 

  • Andreasson U, Ek S, Merz H et al (2008) B cell lymphomas express CX3CR1 a non-B cell lineage adhesion molecule. Cancer Lett 259:138–145

    Article  CAS  PubMed  Google Scholar 

  • Aoyama T, Inokuchi S, Brenner DA et al (2010) CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology 52:1390–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apostolakis S, Spandidos D (2013) Chemokines and atherosclerosis: focus on the CX3CL1/CX3CR1 pathway. Acta Pharmacol Sin 34:1251–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apostolakis S, Amanatidou V, Papadakis EG et al (2009) Genetic diversity of CX3CR1 gene and coronary artery disease: new insights through a meta-analysis. Atherosclerosis 207:8–15

    Article  CAS  PubMed  Google Scholar 

  • Bazan JF, Bacon KB, Hardiman G et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    Article  CAS  PubMed  Google Scholar 

  • Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar K, Konerth M, Kokiko-Cochran ON et al (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biber K, Neumann H, Inoue K et al (2007) Neuronal ‘on’ and ‘off’ signals control microglia. Trends Neurosci 30:596–602

    Article  CAS  PubMed  Google Scholar 

  • Bird AC, Bressler NM, Bressler SB et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 39:367–374

    Article  CAS  PubMed  Google Scholar 

  • Bjerkeli V, Damas JK, Fevang B et al (2007) Increased expression of fractalkine (CX3CL1) and its receptor, CX3CR1, in Wegener’s granulomatosis—possible role in vascular inflammation. Rheumatology 46:1422–1427

    Article  CAS  PubMed  Google Scholar 

  • Boehme SA, Lio FM, Maciejewski-Lenoir D et al (2000) The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol 165:397–403

    Article  CAS  PubMed  Google Scholar 

  • Butoi ED, Gan AM, Manduteanu I et al (2011) Cross talk between smooth muscle cells and monocytes/activated monocytes via CX3CL1/CX3CR1 axis augments expression of pro-atherogenic molecules. Biochim Biophys Acta 1813:2026–2035

    Article  CAS  PubMed  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    Article  CAS  PubMed  Google Scholar 

  • Celesti G, Di Caro G, Bianchi P et al (2013) Early expression of the fractalkine receptor CX3CR1 in pancreatic carcinogenesis. Br J Cancer 109:2424–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekar B, Mummidi S, Perla RP et al (2003) Fractalkine (CX3CL1) stimulated by nuclear factor kappaB (NF-kappaB)-dependent inflammatory signals induces aortic smooth muscle cell proliferation through an autocrine pathway. Biochem J 373(Pt 2):547–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SH, Sun B, Zhou Y et al (2011) CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 286:32713–32722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combadiere C, Salzwedel K, Smith ED et al (1998) Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. J Biol Chem 273:23799–23804

    Article  CAS  PubMed  Google Scholar 

  • Combadiere C, Feumi C, Raoul W et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117:2920–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter R, Williams C, Ryan L et al (2002) Fractalkine (CX3CL1) and brain inflammation: implications for HIV-1-associated dementia. J Neurovirol 8:585–598

    Article  CAS  PubMed  Google Scholar 

  • Cross AK, Woodroofe MN (1999) Chemokine modulation of matrix metalloproteinase and TIMP production in adult rat brain microglia and a human microglial cell line in vitro. Glia 28:183–189

    Article  CAS  PubMed  Google Scholar 

  • Damas JK, Boullier A, Waehre T et al (2005) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, is elevated in coronary artery disease and is reduced during statin therapy. Arterioscler Thromb Vasc Biol 25:2567–2572

    Article  CAS  PubMed  Google Scholar 

  • Denes A, Ferenczi S, Halasz J et al (2008) Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab 28:1707–1721

    Article  CAS  PubMed  Google Scholar 

  • Donohue MM, Cain K, Zierath D et al (2012) Higher plasma fractalkine is associated with better 6-month outcome from ischemic stroke. Stroke 43:2300–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doumas S, Paterson JC, Norris PM et al (2015) Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) in squamous cell carcinoma of the tongue: markers of nerve invasion? Oral Maxillofac Surg 19:61–64

    Article  CAS  PubMed  Google Scholar 

  • El-Shazly A, Berger P, Girodet PO et al (2006) Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma. J Immunol 176:1860–1868

    Article  CAS  PubMed  Google Scholar 

  • Faure S, Meyer L, Costagliola D et al (2000) Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 287:2274–2277

    Article  CAS  PubMed  Google Scholar 

  • Fong AM, Erickson HP, Zachariah JP et al (2000) Ultrastructure and function of the fractalkine mucin domain in CX(3)C chemokine domain presentation. J Biol Chem 275:3781–3786

    Article  CAS  PubMed  Google Scholar 

  • Fonovic UP, Jevnikar Z, Kos J (2013) Cathepsin S generates soluble CX3CL1 (fractalkine) in vascular smooth muscle cells. Biol Chem 394:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Foussat A, Bouchet-Delbos L, Berrebi D et al (2001) Deregulation of the expression of the fractalkine/fractalkine receptor complex in HIV-1-infected patients. Blood 98:1678–1686

    Article  CAS  PubMed  Google Scholar 

  • Garcia GE, Xia Y, Chen S et al (2000) NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. J Leukoc Biol 67:577–584

    CAS  PubMed  Google Scholar 

  • Garcia-Alvarez M, Berenguer J, Guzmán-Fulgencio M et al (2011) High plasma fractalkine (CX3CL1) levels are associated with severe liver disease in HIV/HCV co-infected patients with HCV genotype 1. Cytokine 54:244–248

    Article  CAS  PubMed  Google Scholar 

  • Garton KJ, Gough PJ, Blobel CP et al (2001) Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276:37993–38001

    CAS  PubMed  Google Scholar 

  • Guo J, Chen T, Wang B et al (2003a) Chemoattraction, adhesion and activation of natural killer cells are involved in the antitumor immune response induced by fractalkine/CX3CL1. Immunol Lett 89:1–7

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zhang M, Wang B et al (2003b) Fractalkine transgene induces T-cell-dependent antitumor immunity through chemoattraction and activation of dendritic cells. Int J Cancer 103:212–220

    Article  CAS  PubMed  Google Scholar 

  • Gupta D, Gupta V, Singh V et al (2014) Study of polymorphisms in CX3CR1, PLEKHA1 and VEGF genes as risk factors for age-related macular degeneration in Indian patients. Arch Med Res 45:489–494

    Article  CAS  PubMed  Google Scholar 

  • Harris ED Jr (1990) Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med 322:1277–1289

    Article  PubMed  Google Scholar 

  • Harrison JK, Jiang Y, Chen S et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 95:10896–10901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison JK, Fong AM, Swain PA et al (2001) Mutational analysis of the fractalkine chemokine domain. Basic amino acid residues differentially contribute to CX3CR1 binding, signaling, and cell adhesion. J Biol Chem 276:21632–21641

    Article  CAS  PubMed  Google Scholar 

  • Haskell CA, Cleary MD, Charo IF (2000) Unique role of the chemokine domain of fractalkine in cell capture. Kinetics of receptor dissociation correlate with cell adhesion. J Biol Chem 275:34183–34189

    Article  CAS  PubMed  Google Scholar 

  • He M, Moochhala SM, Adhikari S et al (2009) Administration of exogenous fractalkine, a CX3C chemokine, is capable of modulating inflammatory response in cecal ligation and puncture-induced sepsis. Shock 31:33–39

    Article  PubMed  CAS  Google Scholar 

  • Hu JH, Yang JP, Liu L et al (2012) Involvement of CX3CR1 in bone cancer pain through the activation of microglia p38 MAPK pathway in the spinal cord. Brain Res 1465:1–9

    Article  CAS  PubMed  Google Scholar 

  • Huang ZZ, Li D, Liu CC et al (2014) CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Brain Behav Immun 40:155–165

    Article  CAS  PubMed  Google Scholar 

  • Hundhausen C, Misztela D, Berkhout TA et al (2003) The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102:1186–1195

    Article  CAS  PubMed  Google Scholar 

  • Hyakudomi M, Matsubara T, Hyakudomi R et al (2008) Increased expression of fractalkine is correlated with a better prognosis and an increased number of both CD8 + T cells and natural killer cells in gastric adenocarcinoma. Ann Surg Oncol 15:1775–1782

    Article  PubMed  Google Scholar 

  • Imaizumi T, Matsumiya T, Fujimoto K et al (2000) Interferon-gamma stimulates the expression of CX3CL1/fractalkine in cultured human endothelial cells. Tohoku J Exp Med 192:127–139

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Yoshida H, Satoh K (2004) Regulation of CX3CL1/fractalkine expression in endothelial cells. J Atheroscler Thromb 11:15–21

    Article  CAS  PubMed  Google Scholar 

  • Karlmark KR, Zimmermann HW, Roderburg C et al (2010) The fractalkine receptor CX(3)CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology 52:1769–1782

    Article  CAS  PubMed  Google Scholar 

  • Kasama T, Wakabayashi K, Sato M et al (2010) Relevance of the CX3CL1/fractalkine-CX3CR1 pathway in vasculitis and vasculopathy. Transl Res 155:20–26

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Rooper L, Xie J et al (2012) Fractalkine receptor CX(3)CR1 is expressed in epithelial ovarian carcinoma cells and required for motility and adhesion to peritoneal mesothelial cells. Mol Cancer Res 10:11–24

    Article  CAS  PubMed  Google Scholar 

  • Klein R, Peto T, Bird A et al (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137:486–495

    Article  PubMed  Google Scholar 

  • Klein R, Klein BE, Knudtson MD et al (2007) Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology 114:253–262

    Article  PubMed  Google Scholar 

  • Ko SH, Jeon JI, Kim H et al (2014) Mitogen-activated protein kinase/IkappaB kinase/NF-kappaB-dependent and AP-1-independent CX3CL1 expression in intestinal epithelial cells stimulated with Clostridium difficile toxin A. J Mol Med 92:411–427

    Article  CAS  PubMed  Google Scholar 

  • Landsman L, Bar-On L, Zernecke A et al (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113:963–972

    Article  CAS  PubMed  Google Scholar 

  • Lauro C, Catalano M, Trettel F et al (2015) Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann NY Acad Sci 1351:141–148

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Varvel NH, Konerth ME et al (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177:2549–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Morinaga H, Kim JJ et al (2013) The fractalkine/CX3CR1 system regulates beta cell function and insulin secretion. Cell 153:413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Guo Y, Luan X et al (2012) Independent roles of monocyte chemoattractant protein-1, regulated on activation, normal T-cell expressed and secreted and fractalkine in the vulnerability of coronary atherosclerotic plaques. Circ J 76:2167–2173

    Article  CAS  PubMed  Google Scholar 

  • Lindia JA, McGowan E, Jochnowitz N et al (2005) Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J Pain 6:434–438

    Article  CAS  PubMed  Google Scholar 

  • Liu GY, Kulasingam V, Alexander RT et al (2005) Recycling of the membrane-anchored chemokine, CX3CL1. J Biol Chem 280:19858–19866

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Jiang D, Zhang S et al (2010) Aspirin inhibits fractalkine expression in atherosclerotic plaques and reduces atherosclerosis in ApoE gene knockout mice. Cardiovasc Drugs Ther 24:17–24

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Weber C (2007) Transmembrane chemokines: versatile ‘special agents’ in vascular inflammation. Thromb Haemost 97:694–703

    CAS  PubMed  Google Scholar 

  • Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Zhao L, Fontainhas AM et al (2009) Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD. PLoS ONE 4:e7945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maciejewski-Lenoir D, Chen S, Feng L et al (1999) Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 163:1628–1635

    CAS  PubMed  Google Scholar 

  • Mantyh PW (2006) Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 7:797–809

    Article  CAS  PubMed  Google Scholar 

  • Marchesi F, Piemonti L, Fedele G et al (2008) The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res 68:9060–9069

    Article  CAS  PubMed  Google Scholar 

  • Marchesi F, Locatelli M, Solinas G et al (2010) Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J Neuroimmunol 224:39–44

    Article  CAS  PubMed  Google Scholar 

  • Matsubara T, Ono T, Yamanoi A et al (2007) Fractalkine-CX3CR1 axis regulates tumor cell cycle and deteriorates prognosis after radical resection for hepatocellular carcinoma. J Surg Oncol 95:241–249

    Article  CAS  PubMed  Google Scholar 

  • Matsumiya T, Ota K, Imaizumi T et al (2010) Characterization of synergistic induction of CX3CL1/fractalkine by TNF-alpha and IFN-gamma in vascular endothelial cells: an essential role for TNF-alpha in post-transcriptional regulation of CX3CL1. J Immunol 184:4205–4214

    Article  CAS  PubMed  Google Scholar 

  • Matsunawa M, Isozaki T, Odai T et al (2006) Increased serum levels of soluble fractalkine (CX3CL1) correlate with disease activity in rheumatoid vasculitis. Arthritis Rheum 54:3408–3416

    Article  CAS  PubMed  Google Scholar 

  • Matsunawa M, Odai T, Wakabayashi K et al (2009) Elevated serum levels of soluble CX3CL1 in patients with microscopic polyangiitis. Clin Exp Rheumatol 27:72–78

    CAS  PubMed  Google Scholar 

  • McDermott DH, Colla JS, Kleeberger CA et al (2000) Genetic polymorphism in CX3CR1 and risk of HIV disease. Science 290:2031

    Article  CAS  PubMed  Google Scholar 

  • McDermott DH, Halcox JP, Schenke WH et al (2001) Association between polymorphism in the chemokine receptor CX3CR1 and coronary vascular endothelial dysfunction and atherosclerosis. Circ Res 89:401–407

    Article  CAS  PubMed  Google Scholar 

  • Medina-Contreras O, Geem D, Laur O et al (2011) CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest 121:4787–4795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta NN, Heffron SP, Patel PN et al (2012) A human model of inflammatory cardio-metabolic dysfunction; a double blind placebo-controlled crossover trial. J Transl Med 10:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng C, Liang X, Li Q et al (2013) Changes of GTP cyclohydrolase I and neuronal apoptosis in rat spinal dorsal cord induced by sciatic nerve injury. Neurol Sci 34:2145–2150

    Article  PubMed  Google Scholar 

  • Meucci O, Fatatis A, Simen AA et al (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci USA 97:8075–8080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mionnet C, Buatois V, Kanda A et al (2010) CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung. Nat Med 16:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Morganti JM, Nash KR, Grimmig BA et al (2012) The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson’s disease. J Neurosci 32:14592–14601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimura S, Sugaya M, Sato S (2013) Interaction between CX3CL1 and CX3CR1 regulates vasculitis induced by immune complex deposition. Am J Pathol 182:1640–1647

    Article  CAS  PubMed  Google Scholar 

  • Nanki T, Imai T, Nagasaka K et al (2002) Migration of CX3CR1-positive T cells producing type 1 cytokines and cytotoxic molecules into the synovium of patients with rheumatoid arthritis. Arthritis Rheum 46:2878–2883

    Article  CAS  PubMed  Google Scholar 

  • Nash KR, Lee DC, Hunt JB Jr et al (2013) Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiol Aging 34:1540–1548

    Article  CAS  PubMed  Google Scholar 

  • Nash KR, Moran P, Finneran DJ et al (2015) Fractalkine over expression suppresses alpha-synuclein-mediated neurodegeneration. Mol Ther 23:17–23

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(Pt 2):288–295

    CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JP, Miller DB (2010) Spinal glia and chronic pain. Metabolism 59(Suppl 1):S21–S26

    Article  PubMed  CAS  Google Scholar 

  • Odai T, Matsunawa M, Takahashi R et al (2009) Correlation of CX3CL1 and CX3CR1 levels with response to infliximab therapy in patients with rheumatoid arthritis. J Rheumatol 36:1158–1165

    Article  CAS  PubMed  Google Scholar 

  • Pachot A, Lepape A, Vey S et al (2006) Systemic transcriptional analysis in survivor and non-survivor septic shock patients: a preliminary study. Immunol Lett 106:63–71

    Article  CAS  PubMed  Google Scholar 

  • Pachot A, Cazalis MA, Venet F et al (2008) Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J Immunol 180:6421–6429

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Jagadesham VP, Porter KE et al (2008) Characterisation of fractalkine/CX3CL1 and fractalkine receptor (CX3CR1) expression in abdominal aortic aneurysm disease. Eur J Vasc Endovasc Surg 36:20–27

    Article  CAS  PubMed  Google Scholar 

  • Pour PM, Bell RH, Batra SK (2003) Neural invasion in the staging of pancreatic cancer. Pancreas 26:322–325

    Article  PubMed  Google Scholar 

  • Raoul W, Feumi C, Keller N et al (2008a) Lipid-bloated subretinal microglial cells are at the origin of drusen appearance in CX3CR1-deficient mice. Ophthalmic Res 40:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raoul W, Keller N, Rodero M et al (2008b) Role of the chemokine receptor CX3CR1 in the mobilization of phagocytic retinal microglial cells. J Neuroimmunol 198:56–61

    Article  CAS  PubMed  Google Scholar 

  • Raspe C, Hocherl K, Rath S et al (2013) NF-kappaB-mediated inverse regulation of fractalkine and CX3CR1 during CLP-induced sepsis. Cytokine 61:97–103

    Article  CAS  PubMed  Google Scholar 

  • Richter B, Koller L, Hohensinner PJ et al (2012) Fractalkine is an independent predictor of mortality in patients with advanced heart failure. Thromb Haemost 108:1220–1227

    Article  PubMed  Google Scholar 

  • Rimaniol AC, Till SJ, Garcia G et al (2003) The CX3C chemokine fractalkine in allergic asthma and rhinitis. J Allergy Clin Immunol 112:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Rius C, Company C, Piqueras L et al (2013) Critical role of fractalkine (CX3CL1) in cigarette smoke-induced mononuclear cell adhesion to the arterial endothelium. Thorax 68:177–186

    Article  PubMed  Google Scholar 

  • Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis (first of two parts). N Engl J Med 295:369–377

    Article  CAS  PubMed  Google Scholar 

  • Ruth JH, Volin MV, Haines GK 3rd et al (2001) Fractalkine, a novel chemokine in rheumatoid arthritis and in rat adjuvant-induced arthritis. Arthritis Rheum 44:1568–1581

    Article  CAS  PubMed  Google Scholar 

  • Schaumberg DA, Rose L, DeAngelis MM et al (2014) Prospective study of common variants in CX3CR1 and risk of macular degeneration: pooled analysis from 5 long-term studies. JAMA Ophthalmol 132:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte A, Schulz B, Andrzejewski MG et al (2007) Sequential processing of the transmembrane chemokines CX3CL1 and CXCL16 by alpha- and gamma-secretases. Biochem Biophys Res Commun 358:233–240

    Article  CAS  PubMed  Google Scholar 

  • Schulz C, Schäfer A, Stolla M et al (2007) Chemokine fractalkine mediates leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role for P-selectin expressed on activated platelets. Circulation 116:764–773

    Article  CAS  PubMed  Google Scholar 

  • Sciume G, Soriani A, Piccoli M et al (2010) CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-beta1. Neuro Oncol 12:701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah R, Hinkle CC, Ferguson JF et al (2011) Fractalkine is a novel human adipochemokine associated with type 2 diabetes. Diabetes 60:1512–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu K, Furuichi K, Sakai N et al (2011) Fractalkine and its receptor, CX3CR1, promote hypertensive interstitial fibrosis in the kidney. Hypertens Res 34:747–752

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi K, Fukuda S, Mori T et al (2000) Identification of fractalkine, a CX3C-type chemokine, as a direct target of p53. Cancer Res 60:3722–3726

    CAS  PubMed  Google Scholar 

  • Shulby SA, Dolloff NG, Stearns ME et al (2004) CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res 64:4693–4698

    Article  CAS  PubMed  Google Scholar 

  • Soriano SG, Amaravadi LS, Wang YF et al (2002) Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J Neuroimmunol 125:59–65

    Article  CAS  PubMed  Google Scholar 

  • Staniland AA, Clark AK, Wodarski R et al (2010) Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. J Neurochem 114:1143–1157

    CAS  PubMed  Google Scholar 

  • Stolla M, Pelisek J, von Brühl ML et al (2012) Fractalkine is expressed in early and advanced atherosclerotic lesions and supports monocyte recruitment via CX3CR1. PLoS ONE 7:e43572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Cao H, Han M et al (2007) New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain 129:64–75

    Article  CAS  PubMed  Google Scholar 

  • Tong N, Perry SW, Zhang Q et al (2000) Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. J Immunol 164:1333–1339

    Article  CAS  PubMed  Google Scholar 

  • Tsang JY, Ni YB, Chan SK et al (2013) CX3CL1 expression is associated with poor outcome in breast cancer patients. Breast Cancer Res Treat 140:495–504

    Article  CAS  PubMed  Google Scholar 

  • Tsou CL, Haskell CA, Charo IF (2001) Tumor necrosis factor-alpha-converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem 276:44622–44626

    Article  CAS  PubMed  Google Scholar 

  • Tuo J, Smith BC, Bojanowski CM et al (2004) The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration. FASEB J 18:1297–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volin MV, Woods JM, Amin MA et al (2001) Fractalkine: a novel angiogenic chemokine in rheumatoid arthritis. Am J Pathol 159:1521–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Y, Evans RM (2010) Rosiglitazone activation of PPARgamma suppresses fractalkine signaling. J Mol Endocrinol 44:135–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber C (2008) Chemokines in atherosclerosis, thrombosis, and vascular biology. Arterioscler Thrombs Vasc Biol 28:1896

    Article  CAS  Google Scholar 

  • White GE, Tan TC, John AE et al (2010) Fractalkine has anti-apoptotic and proliferative effects on human vascular smooth muscle cells via epidermal growth factor receptor signalling. Cardiovasc Res 85:825–835

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Ringkamp M, Murinson BB et al (2002) Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J Neurosci 22:7746–7753

    CAS  PubMed  Google Scholar 

  • Wu J, Bie B, Yang H et al (2013) Suppression of central chemokine fractalkine receptor signaling alleviates amyloid-induced memory deficiency. Neurobiol Aging 34:2843–2852

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Qi L, Chen X et al (2014) Expression of CX3CR1 associates with cellular migration, metastasis, and prognosis in human clear cell renal cell carcinoma. Urol Oncol 32:162–170

    Article  CAS  PubMed  Google Scholar 

  • Yoneda O, Imai T, Goda S et al (2000) Fractalkine-mediated endothelial cell injury by NK cells. J Immunol 164:4055–4062

    Article  CAS  PubMed  Google Scholar 

  • Zanchi C, Zoja C, Morigi M et al (2008) Fractalkine and CX3CR1 mediate leukocyte capture by endothelium in response to Shiga toxin. J Immunol 181:1460–1469

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Jiang J, Huebener N et al (2005) Fractalkine gene therapy for neuroblastoma is more effective in combination with targeted IL-2. Cancer Lett 228:187–193

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Yang M, Shao J et al (2013) Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis. Mol Cancer 12:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuang ZY, Kawasaki Y, Tan PH et al (2007) Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun 21:642–651

    Article  CAS  PubMed  Google Scholar 

  • Zujovic V, Benavides J, Vige X et al (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29:305–315

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (81572629), Science and Technology Commission of Shanghai Municipality (13JC1402700), National High Technology Research and Development Program of China (863 program) (2015AA033703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Jiang, L., Bian, C. et al. Role of CX3CL1 in Diseases. Arch. Immunol. Ther. Exp. 64, 371–383 (2016). https://doi.org/10.1007/s00005-016-0395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-016-0395-9

Keywords

Navigation