Skip to main content

State of the Art of Bone Regeneration

  • Conference paper
  • First Online:
Advances in Integrated Design and Production (CPI 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 747 Accesses

Abstract

Scaffold design for bone tissue engineering try to mimic the function of the natural extracellular matrix, to promote the regeneration of damage tissue.

Improving their bioactivity requires a better understanding of the structural effects and mechanical behavior on the bone reconstruction process. This article reviews the relevant literature on mechanobiology of bone reconstruction at different length scales. In the first part the reader is introduced to structure and bone composition. Then the remodeling process associated with cellular mechanotransduction is presented. Indeed, bone cells are extremely sensitive to mechanical loads, so bone has the ability to optimize its architecture according to the mechanical stresses it undergoes. The interest and specificity of the piezoelectric effects of bone compared to a conventional piezoelectric material are analyzed. Finally, we suggest that interdisciplinary approaches, combining mechanobiology and Materiobiology will inspire innovative ideas to satisfy the design requirements of scaffolds for bone tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao, C., Peng, S., Feng, P., Shuai, C.: Bone biomaterials and interactions with stem cells. Bone Res. 5, 1–33 (2017). 17059

    Google Scholar 

  2. Rodriguez, R., Rangel, D., Fonseca, G., Gonzalez, M., Vargas, S.: Results in Physics Piezoelectric properties of synthetic hydroxyapatite-based organic-inorganic hydrated materials. Results Phys. 6, 925–932 (2016)

    Article  Google Scholar 

  3. Louna, Z., Goda, I., Ganghoffer, J.-F.: Identification of a constitutive law for trabecular bone samples under remodeling in the framework of irreversible thermodynamics. Continuum Mech. Thermodyn. 30(3), 529–551 (2018). https://doi.org/10.1007/s00161-018-0619-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Taber, L.A.: Biomechanics of growth, remodeling, and morphogenesis Appl. Mech. Rev. 48(8). 487–545 (1995)

    Google Scholar 

  5. Bert, M.: The Wolff’s laws clinical consequences Part I Spécial implant. Actual Odonto Stomatol. 288(2), 1–5 (2018)

    Google Scholar 

  6. Ganghoffer, G.F., Goda, I.: Micropolar Models of Trabecular Bone, 1st edn. Multiscale Biomechanics Elsevier-ISTE Press Ltd, London (2018). ISBN 9781785482083 263-316

    MATH  Google Scholar 

  7. Lorenzetti, S., Carretta, R., Müller, R., Stüssi, E.: A new device and method for measuring the elastic modulus of single trabeculae. Med. Eng. Phys. 33(8), 993–1000 (2011)

    Article  Google Scholar 

  8. LeGeros, R.Z.: Properties of Osteoconductive Biomaterials-calcium phosphates. Clin. Orthop. Relat. Res. 395, 81–98 (2002)

    Article  Google Scholar 

  9. Suchanek, W., Yoshimura, M.: Processing and properties of HAp based biomaterials for use as hard tissue. J. Mater. Res. 13(1), 94–117 (1998)

    Article  Google Scholar 

  10. Legros, R.Z., Balmain, N., Bonel, G.: Structure and composition of the mineral phase of periosteal bone. J. Chem. Res. 1, 8–9 (1986)

    Google Scholar 

  11. Meyrueis, P.: Biomechanics of bones and treatment of fractures. EMC Rhumatol. 1(1), 64–93 (2004)

    Article  Google Scholar 

  12. Ripamonti, C., Lisi, L., Buffa, A., Gnudi, S., Caudarella, R.: The trabecular bone score predicts spine fragility fractures in postmenopausal caucasian women without osteoporosis independently of bone mineral density. Med. Arch. 72(1), 46–50 (2018)

    Article  Google Scholar 

  13. Lakes, R.: The torsional properties of single selected osteons. J. Biomech. 28(11), 1409–1410 (1995)

    Article  Google Scholar 

  14. Ascenzi, A., Benvenijti, A., Bonucci, E.: The tensile properties of single osteonic lamela technical problem and preliminary results. J. Biomechanics 15(1), 29–37 (1982)

    Article  Google Scholar 

  15. Yang, J.F.C., Lakes, R.J.: Experimental Study of Micropolar and couple stress elasticity in compact bone bending. J. Biomech. 15(2), 91–98 (1982)

    Article  Google Scholar 

  16. Van den Abbeele, M., et al.: A subject-specific biomechanical control model for the prediction of cervical spine muscle forces. Clin. Biomech. 51, 58–66 (2018)

    Article  Google Scholar 

  17. Yang, S., Leong, K.F.: The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7(6), 679–689 (2002)

    Google Scholar 

  18. Hutmacher, D.W., Schantz, J.T., Xu, C., Lam, F., Tan, K.C., Lim, T.C.: State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1, 245–260 (2007)

    Article  Google Scholar 

  19. Engine, C.: The machanical behavior of cancellous bone. J. Biomech. 18(5), 317–328 (1985)

    Article  Google Scholar 

  20. George, D., Spingarn, C., Dissaux, C., Nierenberger, M., Rahman, R.A., Rémond, Y.: Examples of multiscale and multiphysics numerical modeling of biological tissues. Biomed. Mater. Eng. 28(1), S15–S27 (2017)

    Google Scholar 

  21. Carretta, R., Stüssi, E., Müller, R., Lorenzetti, S.: Prediction of local ultimate strain and toughness of trabecular bone tissue by raman material composition analysis. Biomed. Res. Int. 2015, 1–9 (2015)

    Article  Google Scholar 

  22. Scala, I., Spingarn, C., Rémond, Y., Madeo, A., George, D.: Mechanically-driven bone remodeling simulation: application to LIPUS treated rat calvarial defects. Math. Mech. Solids 22(10), 1976–1988 (2017)

    Article  MathSciNet  Google Scholar 

  23. Madeo, A., George, D., Lekszycki, T., Nierenberger, M., Rémond, Y.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling Comptes Rendus Mecanique A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mec. 340(8), 575–589 (2012)

    Article  Google Scholar 

  24. Goda, I., Assidi, M., Ganghoffer, J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53–83 (2014)

    Article  Google Scholar 

  25. Carretta, R., Luisier, B., Bernoulli, D., Stu, E., Mu, R., Lorenzetti, S.: Novel method to analyze post-yield mechanical properties at trabecular bone tissue level. J. Mech. Behav. Biomed. Mater. 20, 6–18 (2013)

    Google Scholar 

  26. Charlebois, M., Jirásek, M., Zysset, P.K.: A nonlocal constitutive model for trabecular bone softening in compression. Biomech. Model. Mechanobiol. 9, 597–611 (2010)

    Article  Google Scholar 

  27. Lakes, R.S.: Dynamical study of couple stress effects in human compact bone. J. Biomech. Eng. 104, 6–11 (1982)

    Article  Google Scholar 

  28. Cosserat, E., Cosserat, F.: On the theory of elasticity. Annales de la faculté des sciences de Toulouse 10(3,4), 1–116 (1896)

    Google Scholar 

  29. Vardoulakis, I.: Cosserat Continuum Mechanics. vol. 87, pp. 99–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-95156-0

  30. Bonfield, W., O’Connor, P.: Anelastic deformation and the friction stress of bone. J. Mater. Sci. 13(1), 202–207 (1978)

    Article  Google Scholar 

  31. George, D., Allena, R., Rémond, Y.: Cell nutriments and motility for mechanobiological bone remodeling in the context of orthodontic periodontal ligament deformation. J. Cell. Immunother. 4(1), 26–29 (2018)

    Article  Google Scholar 

  32. Stoltz, J.F., et al.: Influence of mechanical forces on bone: introduction to mechanobiology and mechanical adaptation concept. J. Cell. Immunother. 4(1), 10–12 (2018)

    Article  Google Scholar 

  33. Thi, M.M., et al.: Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin engineering cell biology. Proc. Nat. Acad. Sci. 110(52), 21012–21017 (2013)

    Google Scholar 

  34. Bonewald, L.F.: The amazing osteocyte. J. Bone Min. Res. 26(2), 229–238 (2011)

    Google Scholar 

  35. Cowin, S.C.: Wolff’s law of trabecular architecture at remodeling equilibrium. J. Biomech. Eng. 108, 84–88 (1986)

    Article  Google Scholar 

  36. Gross, T.S., et al.: Strain gradients correlate with sites of periosteal bone formation. J. Bone Min. Res. 12(6), 982–988 (1997)

    Article  Google Scholar 

  37. Goda, I., et al.: Optimal internal architectures of femoral bone based on relaxation by homogenization and isotropic material design. Mech. Res. Commun. 76, 64–71 (2016)

    Article  Google Scholar 

  38. Hasuike, A., Sato, S., Udagawa, A.: In vivo bone regenerative effect of low-intensity pulsed ultrasound in rat calvarial defects. YMOE 111(1), 12–20 (2011)

    Google Scholar 

  39. Fukada, B.E., Yasuda, I.: Piezoelectric of bone. J. Phys. Soc. Jpn. 12(10), 1158–1162 (1957)

    Google Scholar 

  40. Fernández, J.R., García-Aznar, J.M., Martínez, R.: Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling. J. Theor. Biol. 292, 86–92 (2012)

    Article  MathSciNet  Google Scholar 

  41. Halperin, C., et al.: Piezoelectric effect in human bones studied in nanometer scale. Nano Lett. 4(7), 1253–1256 (2004)

    Article  Google Scholar 

  42. Lakes, R.S.: The role of gradient effects on in the piezoelectricity of bone. IEEE Trans. Biomed. Eng. 27(5), 282–283 (1980)

    Google Scholar 

  43. Brie, J. et al.: A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects. J. Cranio-Maxillofacial Surg. 41, 403–407 (2012)

    Google Scholar 

  44. Harley, B.A., et al.: Mechanical characterization of collagen – glycosaminoglycan scaffolds. Acta Biomaterialia 3, 463–474 (2007)

    Google Scholar 

  45. Murphy, C.M., Haugh, M.G.: The effect of mean pore size on cell attachment, proliferation and migration in collagen glycosaminoglycan scaffolds for tissue engineering. Biomaterials 31(3), 461–466 (2010)

    Google Scholar 

  46. O’Brien, F.J., et al.: The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26, 433–441 (2005)

    Article  Google Scholar 

  47. Harley, B.A., et al.: Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys. J. 95(8), 4013–4024 (2008)

    Article  Google Scholar 

  48. Li, Y., Xiao, Y., Liu, C.: The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem. Rev. 117(5), 4376–4421 (2017)

    Article  Google Scholar 

  49. Mohanty, S., et al.: Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mater. Sci. Eng., C 55, 569–578 (2015)

    Article  Google Scholar 

  50. Haider, A., Haider, S., Kang, I.: A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11(8), 1165–1188 (2018)

    Article  Google Scholar 

  51. Houmard, M., et al.: On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 101(7), 1–37 (2013)

    Google Scholar 

  52. Akbarzadeh, R., Yousefi, A.M.: Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 102(6), 1304–1315 (2016)

    Google Scholar 

  53. Zhang, X., et al.: Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment. ACS Nano 10(8), 7279–7286 (2016)

    Article  Google Scholar 

  54. Freyman, T.M., Yannas, I.V., Yokoo, R., Gibson, L.J.: Fibroblast contractile force is independent of the stiffness which resists the contraction. Exp. Cell Res. 272, 153–162 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Haddani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haddani, F., El Maliki, A. (2021). State of the Art of Bone Regeneration. In: Saka, A., et al. Advances in Integrated Design and Production. CPI 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-62199-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62199-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62198-8

  • Online ISBN: 978-3-030-62199-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics