Skip to main content

Ill-Posed Inverse Problems in Electrical Engineering Applications

  • Chapter
  • First Online:
Numerical Methods for Energy Applications

Part of the book series: Power Systems ((POWSYS))

  • 829 Accesses

Abstract

In this chapter some ill-posed inverse electromagnetic and power engineering problems are introduced, both at a theoretical introductory and mathematical modelling level and detailed regarding their numerical solving case studies based, by the application of several regularization techniques starting from classical Tikhonov approach up to singular values decomposition procedures. Fredholm integral equation mathematical modelling is presented in the physical definition of the inverse electromagnetic and/or power engineering problems, accompanied by explanations regarding the physical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ART:

Algebraic reconstruction technique

IEP:

Inverse electromagnetic problem

IPIEP:

Ill posed inverse electromagnetic problem

HVPL:

High voltage power line

SVD:

Singular value decomposition

TSVD:

Truncated singular value decomposition

References

  1. Sykulski Jan K (ed) (1995) Pawluk Krystyn, Computational magnetics (field synthesis). Chapman & Hall, London

    Google Scholar 

  2. Tikhonov AN, Glasko VB (1965) Use of the regularization method in non-linear problems. USSR Comput Math Math Phys 3:93–107

    Article  Google Scholar 

  3. Hansen PC (2008) Regularization tools, a matlab package for analysis and solution of discrete ill posed problems, Denmark. www.imm.dtu.dk/~pch

  4. Bronshtein IN et al (2004) Handbook of mathematics. Springer, New-York

    Google Scholar 

  5. Lavrentiev M et al (1986) Ill-posed problems of mathematical physics and analysis. American Mathematical Society

    Google Scholar 

  6. Sadiku Matthew NO (2000) Numerical techniques in electromagnetics, 2nd edn. CRC Press, New York

    Book  Google Scholar 

  7. Palka R (1985) Synthesis of electrical fields by optimization of the shape of region boundaries. IEE Proc 132, Pt. A(1):28–32

    Google Scholar 

  8. Morozov VA (1966) Regularization of incorrectly posed problems and the choice of regularization parameter. USSR Comput Math Math Phys 1:242–251

    Article  Google Scholar 

  9. Micu A, Micu Dan O (2002) Electromagnetic field synthesis. Ed. Dacia, Cluj-Napoca

    Google Scholar 

  10. Micu Dan O (1993) Contributions to the synthesis of the stationary electric and magnetic field. PhD thesis, Cluj-Napoca

    Google Scholar 

  11. Michael J (2004) Modular regularization algorithms. PhD thesis, Denmark

    Google Scholar 

  12. Ştefan K (2004) Metode numerice, Algoritme, Programe de calcul, Aplicaţii în Energetică, Ediţia a 3-a, Ed. Orizonturi Universitare, Timişoara

    Google Scholar 

  13. Hansen PC (1992) Analysis of discrete Ill-posed problems by means of the L-curve. SIAM Rev 34(4):561–580

    Article  MathSciNet  Google Scholar 

  14. Hansen PC (1992) Numerical tools for analysis and solution of Fredholm integral equations of the first kind. Inverse Probl 8:849–871

    Article  MathSciNet  Google Scholar 

  15. James Epperson (2002) An Introduction on Numerical Methods and Analysis. Wiley, New York

    Google Scholar 

  16. Chadebec O et al (2002) Recent improvements for solving inverse magnetostatic problem applied to thin shells. IEEE Trans Magn 38(3):1005–1009

    Google Scholar 

  17. Chadebec O et al (2003) How to well pose a magnetization identification problem. IEEE Trans Magn 39(3):1634–1637

    Google Scholar 

  18. Chadebec O et al (2004) Magnetization identification problem: illustration of an effective approach. COMPEL 23(2):518–530

    Google Scholar 

  19. Bărbulescu C, Ceclan A, Kilyeni Ş, Micu DD (2007) Power flow calculation for ill-conditioned systems. Simplified Newton method with SVD partial regularization, EUROCON, Varsovia

    Google Scholar 

  20. Tikhonov Andrev N (1981) Solution of incorrectly formulated problems. Mir, Wiley, New-York

    Google Scholar 

  21. Lamm Patricia K, Scofield Thomas L (2000) Sequential predictor-corrector methods for the variable regularization of Volterra inverse problems. Inverse Probl 16:373–399

    Article  MathSciNet  Google Scholar 

  22. Lavrentiev M (1967) Some improperly posed problems of mathematical physics. Springer, New-York

    Book  Google Scholar 

  23. Gottvald A (1997) A survey of inverse methodologies, meta-evolutionary optimization and Bayesian statistics: applications to in vivo MRS. Int J Appl Electromagnet Mech 1:17–44

    Google Scholar 

  24. Strohmer T, Vershynin R (2006) A randomized solver for linear systems with exponential convergence. Random-Approx 4110:499–507

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan D. Micu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ceclan, A. et al. (2021). Ill-Posed Inverse Problems in Electrical Engineering Applications. In: Mahdavi Tabatabaei, N., Bizon, N. (eds) Numerical Methods for Energy Applications. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-62191-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62191-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62190-2

  • Online ISBN: 978-3-030-62191-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics