Skip to main content

Pericytes in Retinal Ischemia

  • Chapter
  • First Online:
Biology of Pericytes – Recent Advances

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 68))

  • 310 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, Schallek J, Kılıç K, Can A, Di Polo A, Dalkara T (2018) Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. eLife 7

    Google Scholar 

  • Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, Schallek J, Kılıç K, Villafranca-Baughman D, Can A, Di Polo A, Dalkara T (2019) Retinal ischemia induces α-SMA-mediated capillary pericyte contraction coincident with perivascular glycogen depletion. Acta Neuropathol Commun 7

    Google Scholar 

  • Allt G, Lawrenson JG (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ames A, Wright RL, Kowada M, Thurston JM, Majno G (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52:437–453

    PubMed  PubMed Central  Google Scholar 

  • Arimura K, Ago T, Kamouchi M, Nakamura K, Ishitsuka K, Kuroda J, Sugimori H, Ooboshi H, Sasaki T, Kitazono T (2012) PDGF receptor β signaling in pericytes following ischemic brain injury. Curr Neurovasc Res 9:1–9

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandopadhyay R, Orte C, Lawrenson JG, Reid AR, De Silva S, Allt G (2001) Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol 30:35–44

    Article  CAS  PubMed  Google Scholar 

  • Beltramo E, Porta M (2013) Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 20(26):3218–3225

    Article  CAS  PubMed  Google Scholar 

  • Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15(4):215–228

    Article  CAS  PubMed  Google Scholar 

  • Biesecker KR, Srienc AI, Shimoda AM, Agarwal A, Bergles DE, Kofuji P, Newman EA (2016) Glial cell calcium signaling mediates capillary regulation of blood flow in the retina. J Neurosci 36:9435–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bill A (1975) Blood circulation and fluid dynamics in the eye. Physiol Rev 55:383–417

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A, Zhang T, Wang Z-M, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22:2298–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang Z-M, Messi ML, Mintz A, Delbono O (2014a) Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 6:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang Z-M, Messi ML, Olson JD, Mintz A, Delbono O (2014b) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307:C25–C38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AM (2004) Brain glycogen re-awakened. J Neurochem 89:537–552

    Article  CAS  PubMed  Google Scholar 

  • Caporarello N, D’Angeli F, Cambria MT, Candido S, Giallongo C, Salmeri M, Lombardo C, Longo A, Giurdanella G, Anfuso CD, Lupo G (2019) Pericytes in microvessels: from “mural” function to brain and retina regeneration. Int J Mol Sci 20(24):6351

    Article  CAS  PubMed Central  Google Scholar 

  • Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 66:366–378

    Article  CAS  PubMed  Google Scholar 

  • Crowell RM, Olsson Y (1972) Impaired microvascular filling after focal cerebral ischemia in monkeys. J Neurosurg 36:303–309

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Xu X, Bi H, Zhu Q, Wu J, Xia X, Ren Q, Ho PC (2006) Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Exp Eye Res 83:807–816

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Vaz J (2010) Blood–retinal barrier. Encyclopedia of the eye, pp 209–215

    Google Scholar 

  • Dalkara T (2019) Pericytes. Stroke 50:2985–2991

    Article  PubMed  Google Scholar 

  • Dalkara T, Alarcon-Martinez L (2015) Cerebral microvascular pericytes and neurogliovascular signaling in health and disease. Brain Res 1623:3–17

    Article  CAS  PubMed  Google Scholar 

  • Dalkara T, Arsava EM (2012) Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis? J Cereb Blood Flow Metab 32:2091–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalkara T, Alarcon-Martinez L, Yemisci M (2016) Role of pericytes in neurovascular unit and stroke. In: Chen J, Zhang JH, Hu X (eds) Non-neuronal mechanisms of brain damage and repair after stroke. Springer International Publishing, Cham, pp 25–43

    Chapter  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468(7323):562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danesh-Meyer HV, Kerr NM, Zhang J, Eady EK, O’Carroll SJ, Nicholson LFB, Johnson CS, Green CR (2012) Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain J Neurol 135:506–520

    Article  Google Scholar 

  • Danesh-Meyer HV, Zhang J, Acosta ML, Rupenthal ID, Green CR (2016) Connexin43 in retinal injury and disease. Prog Retin Eye Res 51:41–68

    Article  CAS  PubMed  Google Scholar 

  • Das A, Frank RN, Weber ML, Kennedy A, Reidy CA, Mancini MA (1988) ATP causes retinal pericytes to contract in vitro. Exp Eye Res 46:349–362

    Article  CAS  PubMed  Google Scholar 

  • del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang CM (1991) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22:1276–1283

    Article  PubMed  Google Scholar 

  • del Zoppo GJ, Sharp FR, Heiss W-D, Albers GW (2011) Heterogeneity in the penumbra. J Cereb Blood Flow Metab 31:1836–1851

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Coránguez M, Ramos C, Antonetti DA (2017) The inner blood-retinal barrier: cellular basis and development. Vis Res 139:123–137

    Article  PubMed  Google Scholar 

  • Dobrogowska D, Lossinsky A, Tarnawski M, Vorbrodt A (1998) J Neurocytol 27:163–173

    Article  CAS  PubMed  Google Scholar 

  • Dziennis S, Qin J, Shi L, Wang RK (2015) Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain.. Scientific Reports

    Book  Google Scholar 

  • Eilken HM, Diéguez-Hurtado R, Schmidt I, Nakayama M, Jeong H-W, Arf H, Adams S, Ferrara N, Adams RH (2017) Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat Commun 8(1)

    Google Scholar 

  • Erdener SE, Dalkara T (2019) Small vessels are a big problem in neurodegeneration and neuroprotection. Front Neurol 16(10):889

    Article  Google Scholar 

  • Faal T, Phan DT, Davtyan H, Scarfone VM, Varady E, Blurton-Jones M, Hughes CC, Inlay MA (2019) Induction of mesoderm and neural crest-derived pericytes from human pluripotent stem cells to study blood-brain barrier interactions. Stem Cell Rep 12:451–460

    Article  CAS  Google Scholar 

  • Farrington-Rock C, Crofts N, Doherty M, Ashton B, Griffin-Jones C, Canfield A (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110(15):2226–2232

    Article  CAS  PubMed  Google Scholar 

  • Fischer S, Wobben M, Marti H, Renz D, Schaper W (2002) Hypoxia-induced Hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 63:70–80

    Article  CAS  PubMed  Google Scholar 

  • Frank RN, Dutta S, Mancini MA (1987) Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci 28(7):1086–1091

    CAS  PubMed  Google Scholar 

  • Fujimoto T, Singer SJ (1987) Immunocytochemical studies of desmin and vimentin in pericapillary cells of chicken. J Histochem Cytochem 35:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Gaudin A, Yemisci M, Eroglu H, Lepetre-Mouelhi S, Turkoglu OF, Dönmez-Demir B, Caban S, Sargon MF, Garcia-Argote S, Pieters G, Loreau O, Rousseau B, Tagit O, Hildebrandt N, Le Dantec Y, Mougin J, Valetti S, Chacun H, Nicolas V, Desmaële D, Andrieux K, Capan Y, Dalkara T, Couvreur P (2014) Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotechnol 9:1054–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, Aiello LP, Kern TS, King GL (2009) Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15:1298–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314(1):15–23

    Article  PubMed  Google Scholar 

  • Grunwald JE, Riva CE, Stone RA, Keates EU, Petrig BL (1984) Retinal auto-regulation in open-angle glaucoma. Ophthalmology 91:1690–1694

    Article  CAS  PubMed  Google Scholar 

  • Gurer G, Gursoy-Ozdemir Y, Erdemli E, Can A, Dalkara T (2009) Astrocytes are more resistant to focal cerebral ischemia than neurons and die by a delayed necrosis. Brain Pathol Zurich Switz 19:630–641

    Article  CAS  Google Scholar 

  • Gursoy-Ozdemir Y, Can A, Dalkara T (2004) Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 35:1449–1453

    Article  PubMed  CAS  Google Scholar 

  • Gursoy-Ozdemir Y, Yemisci M, Dalkara T (2012) Microvascular protection is essential for successful neuroprotection in stroke. J Neurochem 123(Suppl 2):2–11

    Article  CAS  PubMed  Google Scholar 

  • Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallenbeck JM, Dutka AJ, Tanishima T, Kochanek PM, Kumaroo KK, Thompson CB, Obrenovitch TP, Contreras TJ (1986) Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke 17:246–253

    Article  CAS  PubMed  Google Scholar 

  • Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenerg 2

    Google Scholar 

  • Hammes H-P, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U (2002) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51(10):3107–3112

    Article  CAS  PubMed  Google Scholar 

  • Hammes H-P, Feng Y, Pfister F, Brownlee M (2010) Diabetic retinopathy: targeting Vasoregression. Diabetes 60(1):9–16

    Article  CAS  Google Scholar 

  • Herman IM, D’Amore PA (1985) Microvascular pericytes contain muscle and non-muscle actins. J Cell Biol 101:43–52

    Article  CAS  PubMed  Google Scholar 

  • Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the Normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87:95–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova E, Kovacs-Oller T, Sagdullaev BT (2017) Vascular Pericyte Impairment and Connexin43 Gap Junction Deficit Contribute to Vasomotor Decline in Diabetic Retinopathy. J Neurosci 37(32):7580–7894

    Google Scholar 

  • Jeansson M, Gawlik A, Anderson G, Li C, Kerjaschki D, Henkelman M, Quaggin SE (2011) Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Investig 121(6):2278–2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce NC, Haire MF, Palade GE (1985a) Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin. J Cell Biol 100:1379–1386

    Article  CAS  PubMed  Google Scholar 

  • Joyce NC, Haire MF, Palade GE (1985b) Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations. J Cell Biol 100:1387–1395

    Article  CAS  PubMed  Google Scholar 

  • Kamouchi M, Kitazono T, Ago T, Wakisaka M, Ooboshi H, Ibayashi S, Iida M (2004) Calcium influx pathways in rat CNS pericytes. Brain Res Mol Brain Res 126:114–120

    Article  CAS  PubMed  Google Scholar 

  • Kamouchi M, Kitazono T, Ago T, Wakisaka M, Kuroda J, Nakamura K, Hagiwara N, Ooboshi H, Ibayashi S, Iida M (2007) Hydrogen peroxide-induced Ca2+ responses in CNS pericytes. Neurosci Lett 416:12–16

    Article  CAS  PubMed  Google Scholar 

  • Kamouchi M, Ago T, Kitazono T (2012) Brain pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol 31:175–193

    Article  Google Scholar 

  • Karow M, Schichor C, Beckervordersandforth R, Berninger B (2014) Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons. J Vis Exp (87)

    Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Sivakumar V, Yong Z, Lu J, Foulds W, Ling E (2007) Blood–retinal barrier disruption and ultrastructural changes in the hypoxic retina in adult rats: the beneficial effect of melatonin administration. J Pathol 212:429–439

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Foulds W, Ling E (2008) Blood–retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res 27(6):622–647

    Article  CAS  PubMed  Google Scholar 

  • Kelley C, D’Amore P, Hechtman HB, Shepro D (1987) Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. J Cell Biol 104:483–490

    Article  CAS  PubMed  Google Scholar 

  • Kerr NM, Johnson CS, Zhang J, Eady EK, Green CR, Danesh-Meyer HV (2012) High pressure-induced retinal ischaemia reperfusion causes upregulation of gap junction protein connexin43 prior to retinal ganglion cell loss. Exp Neurol 234:144–152

    Article  CAS  PubMed  Google Scholar 

  • Khennouf L, Gesslein B, Brazhe A, Octeau JC, Kutuzov N, Khakh BS, Lauritzen M (2018) Active role of capillary pericytes during stimulation-induced activity and spreading depolarization. Brain J Neurol 141:2032–2046

    Article  Google Scholar 

  • Kim JH, Kim JH, Yu YS, Kim DH, Kim K-W (2009) Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J Neurosci Res 87(3):653–659

    Article  CAS  PubMed  Google Scholar 

  • Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18:419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Hosoya K-I, Hori S, Tomi M, Ohtsuki S, Terasaki T (2005) PKC/MAPK signaling suppression by retinal pericyte conditioned medium prevents retinal endothelial cell proliferation. J Cell Physiol 203:378–386

    Article  CAS  PubMed  Google Scholar 

  • Kornfield TE, Newman EA (2014) Regulation of blood flow in the retinal trilaminar vascular network. J Neurosci 34:11504–11513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuwabara T, Cogan D (1961) Retinal glycogen. Trans Am Ophthalmol Soc 59:106–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leal-Campanario R, Alarcon-Martinez L, Rieiro H, Martinez-Conde S, Alarcon-Martinez T, Zhao X, Lamee J, Popp PJO, Calhoun ME, Arribas JI, Schlegel AA, Stasi LLD, Rho JM, Inge L, Otero-Millan J, Treiman DM, Macknik SL (2017) Abnormal capillary Vasodynamics contribute to ictal neurodegeneration in epilepsy. Sci Rep 7:43276

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Gursoy-Ozdemir Y, Fu B, Boas DA, Dalkara T (2016) Optical coherence tomography imaging of capillary reperfusion after ischemic stroke. Appl Opt 55:9526

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Puro DG (2001) Adenosine activates ATP-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res 907:93–99

    Article  CAS  PubMed  Google Scholar 

  • Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    Article  CAS  PubMed  Google Scholar 

  • Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergström G, Dejana E, Östman A, Lindahl P, Betsholtz C (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17(15):1835–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Agalliu D, Yu C, Fisher M (2012) The role of pericytes in blood-brain barrier function and stroke. Curr Pharm Des 18:3653–3662

    Article  CAS  PubMed  Google Scholar 

  • Mayhan WG (1999) VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Phys Cell Phys 276(5):C1148–C1153

    CAS  Google Scholar 

  • Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D (2016) Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci 19:1619–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motiejūnaitė R, Kazlauskas A (2008) Pericytes and ocular diseases. Exp Eye Res 86(2):171–177

    Article  PubMed  CAS  Google Scholar 

  • Murphy DD, Wagner RC (1994) Differential contractile response of cultured micro-vascular pericytes to vasoactive agents. Microcirculaiton 1:121–128

    Article  CAS  Google Scholar 

  • Nakagomi T, Nakano-Doi A, Kawamura M, Matsuyama T (2015) Do vascular Pericytes contribute to neurovasculogenesis in the central nervous system as multipotent vascular stem cells? Stem Cells Dev 24:1730–1739

    Article  PubMed  Google Scholar 

  • Nakahara T, Hoshino M, Hoshino S-I, Mori A, Sakamoto K, Ishii K (2015) Structural and functional changes in retinal vasculature induced by retinal ischemia-reperfusion in rats. Exp Eye Res 135:134–145

    Article  CAS  PubMed  Google Scholar 

  • Nakaizumi A, Puro DG (2011) Vulnerability of the retinal microvasculature to hypoxia: role of polyamine-regulated K(ATP) channels. Invest Ophthalmol Vis Sci 52:9345–9352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Kamouchi M, Kitazono T, Kuroda J, Shono Y, Hagiwara N, Ago T, Oo-boshi H, Ibayashi S, Iida M (2009) Amiloride inhibits hydrogen peroxide-induced Ca2+ responses in human CNS pericytes. Microvasc Res 77:327–334

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Arimura K, Nishimura A, Tachibana M, Yoshikawa Y, Makihara N, Wakisaka Y, Kuroda J, Kamouchi M, Ooboshi H, Kitazono T, Ago T (2016) Possible involvement of basic FGF in the upregulation of PDGFRβ in pericytes after ischemic stroke. Brain Res 1630:98–108

    Article  CAS  PubMed  Google Scholar 

  • Nehls V, Drenckhahn D (1991) Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 113:147–154

    Article  CAS  PubMed  Google Scholar 

  • Newman EA (2013) Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab 33:1685–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Farrell FM, Mastitskaya S, Hammond-Haley M, Freitas F, Wah WR, Attwell D (2017) Capillary pericytes mediate coronary no-reflow after myocardial ischaemia. eLife 6

    Google Scholar 

  • Ogura S, Kurata K, Hattori Y, Takase H, Ishiguro-Oonuma T, Hwang Y, Ahn S, Park I, Ikeda W, Kusuhara S, Fukushima Y, Nara H, Sakai H, Fujiwara T, Matsushita J, Ema M, Hirashima M, Minami T, Shibuya M, Takakura N, Kim P, Miyata T, Ogura Y, Uemura A (2017) Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. JCI Insight 2(3):e90905

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozerdem U, Stallcup WB (2004) Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YS, Kim NH, Jo I (2003) Hypoxia and vascular endothelial growth factor acutely up-regulate angiopoietin-1 and Tie2 mRNA in bovine retinal pericytes. Microvasc Res 65:125–131

    Article  CAS  PubMed  Google Scholar 

  • Park TS, Bhutto I, Zimmerlin L, Huo JS, Nagaria P, Miller D, Rufaihah AJ, Talbot C, Aguilar J, Grebe R, Merges C, Reijo-Pera R, Feldman RA, Rassool F, Cooke J, Lutty G, Zambidis ET (2014a) Vascular progenitors from cord blood–derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation 129:359–372

    Article  PubMed  Google Scholar 

  • Park SW, Yun J-H, Kim JH, Kim K-W, Cho C-H, Kim JH (2014b) Angiopoietin 2 induces pericyte apoptosis via α3β1 integrin signaling in diabetic retinopathy. Diabetes 63:3057–3068

    Article  PubMed  Google Scholar 

  • Park DY, Lee J, Kim J, Kim K, Hong S, Han S, Kubota Y, Augustin HG, Ding L, Kim JW, Kim H, He Y, Adams RH, Koh GY (2017) Plastic roles of pericytes in the blood–retinal barrier. Nat Commun 8(1)

    Google Scholar 

  • Patel JI, Hykin PG, Gregor ZJ, Boulton M, Cree IA (2005) Angiopoietin concentrations in diabetic retinopathy. Br J Ophthalmol 89(4):480–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puro DG (2007) Physiology and pathobiology of the pericyte-containing retinal microvasculature: new developments. Microcirculation 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Puro DG (2012) Retinovascular physiology and pathophysiology: new experimental approach/new insights. Prog Retin Eye Res 31:258–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riva CE, Titze P, Hero M, Petrig BL (1997) Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 38:1752–1760

    CAS  PubMed  Google Scholar 

  • Romeo G, Liu W-H, Asnaghi V, Kern TS, Lorenzi M (2002) Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51:2241–2248

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10:1377–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11:85–158.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungta RL, Chaigneau E, Osmanski B-F, Charpak S (2018) Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron 99:362–375.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A, Kuwahara-Otani S, Hayakawa T, Yagi H, Matsuyama T, Nakagomi T (2016) Brain pericytes serve as micro-glia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation 13(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos GSP, Prazeres PHDM, Mintz A, Birbrair A (2018) Role of pericytes in the retina. Eye 32:483–486

    Article  CAS  PubMed  Google Scholar 

  • Schallek J, Geng Y, Nguyen H, Williams DR (2013) Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. Invest Ophthalmol Vis Sci 54:8237–8250

    Article  PubMed  PubMed Central  Google Scholar 

  • Schor AM, Allen TD, Canfield AE, Sloan P, Schor SL (1990) Pericytes derived from the retinal microvasculature undergo calcification in vitro. J Cell Sci 97(Pt 3):449–461

    Article  PubMed  Google Scholar 

  • Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Srienc AI, Kurth-Nelson ZL, Newman EA (2010) Imaging retinal blood flow with laser speckle flowmetry. Front Neuroenerg 2

    Google Scholar 

  • Stebbins MJ, Gastfriend BD, Canfield SG, Lee M-S, Richards D, Faubion MG, Li W-J, Daneman R, Palecek SP, Shusta EV (2019) Human pluripotent stem cell–derived brain pericyte–like cells induce blood-brain barrier properties. Sci Adv 5(3):eaau7375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Matsunami T, Hisa Y, Takata K, Takamatsu T, Oyamada M (2009) Roles of gap junctions in glucose transport from glucose transporter 1-positive to -negative cells in the lateral wall of the rat cochlea. Histochem Cell Biol 131:89–102

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19:771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV (2018) The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 21:1318–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Park HK, Melgar MA, Alcocer L, Pinto J, Lenzi T, Diaz FG, Rafols JA (1997) Cerebral cortex blood flow and vascular smooth muscle contractility in a rat model of ischemia: a correlative laser Doppler flowmetric and scanning electron microscopic study. Acta Neuropathol (Berl) 93:354–368

    Article  CAS  Google Scholar 

  • Takihara Y, Inatani M, Eto K, Inoue T, Kreymerman A, Miyake S, Ueno S, Nagaya M, Nakanishi A, Iwao K, Takamura Y, Sakamoto H, Satoh K, Kondo M, Sakamoto T, Goldberg JL, Nabekura J, Tanihara H (2015) In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci 112:10515–10520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taskiran-Sag A, Yemisci M, Gursoy-Ozdemir Y, Erdener SE, Karatas H, Yuce D, Dalkara T (2018) Improving microcirculatory reperfusion reduces parenchymal oxy-gen radical formation and provides neuroprotection. Stroke 49:1267–1275

    Article  CAS  PubMed  Google Scholar 

  • Teichert M, Milde L, Holm A, Stanicek L, Gengenbacher N, Savant S, Ruckdeschel T, Hasanov Z, Srivastava K, Hu J, Hertel S, Bartol A, Schlereth K, Augustin HG (2017) Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun 8(1)

    Google Scholar 

  • Toft-Kehler AK, Skytt DM, Svare A, Lefevere E, Van Hove I, Moons L, Waagepetersen HS, Kolko M (2017) Mitochondrial function in Müller cells – does it matter? Mitochondrion 36:43–51

    Article  CAS  PubMed  Google Scholar 

  • Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, Rivera FJ, Reitsamer HA (2016) Brain and retinal pericytes: origin, function and role. Front Cell Neurosci 10

    Google Scholar 

  • Uemura A, Ogawa M, Hirashima M, Fujiwara T, Koyama S, Takagi H, Honda Y, Wiegand SJ, Yancopoulos GD, Nishikawa S-I (2002) Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Investig 110:1619–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN, Shih AY (2016) Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci 37(1):129–140

    Article  Google Scholar 

  • Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Laviña B, Gouveia L, Sun Y, Raschperger E, Räsänen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480

    Article  CAS  PubMed  Google Scholar 

  • Vidhya S, Ramya R, Coral K, Sulochana K, Bharathidevi S (2018) Free amino acids hydroxyproline, lysine, and glycine promote differentiation of retinal pericytes to adipocytes: a protective role against proliferative diabetic retinopathy. Exp Eye Res 173:179–187

    Article  CAS  PubMed  Google Scholar 

  • Wallow IH, Burnside B (1980) Actin filaments in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 19:1433–1441

    CAS  PubMed  Google Scholar 

  • Wang YL, Hui YN, Guo B, Ma JX (2007) Strengthening tight junctions of retinal microvascular endothelial cells by pericytes under normoxia and hypoxia involving angiopoietin-1 signal way. Eye 21:1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Wasilewa P, Hockwin O, Korte I (1976) Glycogen concentration changes in retina, vitreous body and other eye tissues caused by disturbances of blood circulation. Albrecht Von Graefes Arch Für Klin Exp Ophthalmol Albrecht Von Graefes Arch Clin Exp Ophthalmol 199:115–120

    Article  CAS  Google Scholar 

  • Wilson CA, Berkowitz BA, Funatsu H, Metrikin DC, Harrison DW, Lam MK, Sonkin PL (1995) Blood-retinal barrier breakdown following experimental retinal ischemia and reperfusion. Exp Eye Res 61:547–557

    Article  CAS  PubMed  Google Scholar 

  • Winkler EA, Sagare AP, Zlokovic BV (2014) The pericyte: a forgotten cell type with important implications for Alzheimers disease? Brain Pathol 24(4):371–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, Maia M, Mathenge W, Moreker S, Muqit MMK, Resnikoff S, Verdaguer J, Zhao P, Ferris F, Aiello LP, Taylor HR (2018) Guidelines on diabetic eye care: the International Council of Ophthalmology Recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology 125:1608–1622

    Article  PubMed  Google Scholar 

  • Wu DM, Kawamura H, Sakagami K, Kobayashi M, Puro DG (2003) Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol 284:H2083–2090

    Google Scholar 

  • Yamagishi S, Yonekura H, Yamamoto Y, Fujimori H, Sakurai S, Tanaka N, Yamamoto H (1999) Vascular endothelial growth factor acts as a pericyte mitogen under hypoxic conditions. Lab Investig 79(4):501–509

    CAS  PubMed  Google Scholar 

  • Yamanishi S, Katsumura K, Kobayashi T, Puro DG (2006) Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol Heart Circ Physiol 290:H925–H934

    Article  CAS  PubMed  Google Scholar 

  • Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Kabara M, Kano K, Horiuchi K, Hayasaka T, Tomita Y, Takehara N, Minoshima A, Aonuma T, Maruyama K, Nakagawa N, Azuma N, Hasebe N, Kawabe JI (2019) Capillary-resident EphA7 pericytes are multipotent cells with anti-ischemic effects through capillary formation. Stem Cells Transl Med 9(1):120–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu D-Y, Cringle SJ, Yu PK, Balaratnasingam C, Mehnert A, Sarunic MV, An D, Su E-N (2019a) Retinal capillary perfusion: spatial and temporal heterogeneity. Prog Retin Eye Res 70:23–54

    Article  PubMed  Google Scholar 

  • Yu P-K, An D, Balaratnasingam C, Cringle SJ, Yu D-Y (2019b) Topographic distribution of contractile protein in the human macular microvasculature. Invest Ophthalmol Vis Sci 60:4574–4582

    Article  CAS  PubMed  Google Scholar 

  • Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S (2018) Molecular architecture of the mouse nervous system. Cell 174:999–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZG, Chopp M, Goussev A, Lu D, Morris D, Tsang W, Powers C, Ho KL (1999) Cerebral microvascular obstruction by fibrin is associated with upregulation of PAI-1 acutely after onset of focal embolic ischemia in rats. J Neurosci 19:10898–10907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Gong B, Hatala DA, Kern TS (2007) Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Investig Opthalmol Visual Sci 48(1):361

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Luis Alarcon-Martinez prepared Fig. 5.4. We thank our colleagues who contributed to the work from which figures are reused.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Dalkara .

Editor information

Editors and Affiliations

Ethics declarations

Funding: Previously published research papers from our laboratory (Alarcon-Martinez et al. 2018 and 2019), which were cited here and their figures were partly reused, were supported in part by a grant to Drs. Luis Alarcon-Martinez and Turgay Dalkara from the seventh Framework Programme EU Marie Curie Actions – Co-funded Brain Circulation Scheme, and The Scientific and Technological Research Council of Turkey (TÜBİTAK; project number: 112C013). Further funding is given in references, Alarcon-Martinez et al. 2018 and 2019. Dr. Turgay Dalkara’s research is supported by The Turkish Academy of Sciences.

Disclosure of Interests: None.

Ethical Approval: For previously published research from our laboratory, all applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Details of ethics committee and permit numbers are given in references, Alarcon-Martinez et al. 2018 and 2019.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alarcon-Martinez, L., Kureli, G., Dalkara, T. (2021). Pericytes in Retinal Ischemia. In: Birbrair, A. (eds) Biology of Pericytes – Recent Advances. Stem Cell Biology and Regenerative Medicine, vol 68. Humana, Cham. https://doi.org/10.1007/978-3-030-62129-2_5

Download citation

Publish with us

Policies and ethics