Skip to main content

Biology of Pericytes – Recent Advances: Role of Pericytes in Brain Metastasis

  • Chapter
  • First Online:
Biology of Pericytes – Recent Advances

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112(8):1142–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C et al (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561

    Article  CAS  PubMed  Google Scholar 

  • Bagci-Onder T, Du W, Figueiredo JL, Martinez-Quintanilla J, Shah K (2015) Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells. Brain 138(Pt 6):1710–1721

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagley RG, Weber W, Rouleau C, Teicher BA (2005) Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy. Cancer Res 65(21):9741–9750

    Article  CAS  PubMed  Google Scholar 

  • Barlow KD, Sanders AM, Soker S, Ergun S, Metheny-Barlow LJ (2013) Pericytes on the tumor vasculature: jekyll or hyde? Cancer Microenviron 6(1):1–17

    Article  PubMed  Google Scholar 

  • Bautch VL (2011) Stem cells and the vasculature. Nat Med 17(11):1437–1443

    Article  CAS  PubMed  Google Scholar 

  • Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger M, Bergers G, Arnold B, Hammerling GJ, Ganss R (2005) Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood 105(3):1094–1101

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7(4):452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betsholtz C (1995) Role of platelet-derived growth factors in mouse development. Int J Dev Biol 39(5):817–825

    CAS  PubMed  Google Scholar 

  • Binello E, Germano IM (2012) Stem cells as therapeutic vehicles for the treatment of high-grade gliomas. Neuro Oncol 14(3):256–265

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2013) Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 305(11):C1098–C1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boire A, Brastianos PK, Garzia L, Valiente M (2020) Brain metastasis. Nat Rev Cancer 20(1):4–11

    Article  CAS  PubMed  Google Scholar 

  • Bose A, Barik S, Banerjee S, Ghosh T, Mallick A, Bhattacharyya Majumdar S et al (2013) Tumor-derived vascular pericytes anergize Th cells. J Immunol 191(2):971–981

    Article  CAS  PubMed  Google Scholar 

  • Brandao M, Simon T, Critchley G, Giamas G (2019) Astrocytes, the rising stars of the glioblastoma microenvironment. Glia 67(5):779–790

    Article  PubMed  Google Scholar 

  • Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E et al (2017) Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol 241(3):362–374

    Article  CAS  PubMed  Google Scholar 

  • Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA (2019) Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci 13:282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buttigliero C, Bertaglia V, Novello S (2016) Anti-angiogenetic therapies for central nervous system metastases from non-small cell lung cancer. Transl Lung Cancer Res 5(6):610–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspani EM, Crossley PH, Redondo-Garcia C, Martinez S (2014) Glioblastoma: a pathogenic crosstalk between tumor cells and pericytes. PLoS One 9(7):e101402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Xu XH, Hu J (2016) Role of pericytes in angiogenesis: focus on cancer angiogenesis and anti-angiogenic therapy. Neoplasma 63(2):173–182

    CAS  PubMed  Google Scholar 

  • Cody JJ, Scaturro P, Cantor AB, Yancey Gillespie G, Parker JN, Markert JM (2012) Preclinical evaluation of oncolytic deltagamma(1)34.5 herpes simplex virus expressing interleukin-12 for therapy of breast cancer brain metastases. Int J. Breast Cancer 2012:628697

    Google Scholar 

  • Colombo MP, Trinchieri G (2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13(2):155–168

    Article  CAS  PubMed  Google Scholar 

  • Dalkara T, Gursoy-Ozdemir Y, Yemisci M (2011) Brain microvascular pericytes in health and disease. Acta Neuropathol 122(1):1–9

    Article  PubMed  Google Scholar 

  • De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474

    Article  PubMed  CAS  Google Scholar 

  • Dias Moura Prazeres PH, Sena IFG, Borges IDT, de Azevedo PO, Andreotti JP, de Paiva AE et al (2017) Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 427(1):6–11

    Article  PubMed  CAS  Google Scholar 

  • Dore-Duffy P, Katychev A, Wang X, Van Buren E (2006) CNS microvascular pericytes exhibit multipotential stem cell activity. J Cerebral Blood Flow Metab: Off J Int Soc Cereb Blood Flow and Metab 26(5):613–624

    Article  CAS  Google Scholar 

  • Er EE, Valiente M, Ganesh K, Zou Y, Agrawal S, Hu J et al (2018) Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol 20(8):966–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T, Nakagawa S, Morofuji Y, Watanabe D, Ujifuku K, Horie N et al (2020) Pericytes suppress brain metastasis from lung cancer in vitro. Cell Mol Neurobiol 40(1):113–121

    Article  PubMed  Google Scholar 

  • Gaceb A, Paul G (2018) Pericyte Secretome. Adv Exp Med Biol 1109:139–163

    Article  CAS  PubMed  Google Scholar 

  • Garbuzova-Davis S, Haller E, Lin R, Borlongan CV (2017) Intravenously transplanted human bone marrow endothelial progenitor cells engraft within brain capillaries, preserve mitochondrial morphology, and display pinocytotic activity toward blood-brain barrier repair in ischemic stroke rats. Stem Cells 35(5):1246–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam J, Yao Y (2018) Roles of pericytes in stroke pathogenesis. Cell Transplant 27(12):1798–1808

    Article  PubMed  PubMed Central  Google Scholar 

  • Gril B, Evans L, Palmieri D, Steeg PS (2010) Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies. Eur J Cancer 46(7):1204–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C et al (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3(6):589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH et al (2008) Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453(7193):410–414

    Article  CAS  PubMed  Google Scholar 

  • Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Volarevic V (2018) Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci 25(1):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haseloff RF, Blasig IE, Bauer HC, Bauer H (2005) In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25(1):25–39

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrik Heiland D, Ravi VM, Behringer SP, Frenking JH, Wurm J, Joseph K et al (2019) Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun 10(1):2541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heyder C, Gloria-Maercker E, Entschladen F, Hatzmann W, Niggemann B, Zanker KS et al (2002) Realtime visualization of tumor cell/endothelial cell interactions during transmigration across the endothelial barrier. J Cancer Res Clin Oncol 128(10):533–538

    Article  CAS  PubMed  Google Scholar 

  • Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54(3):527–559

    Article  CAS  PubMed  Google Scholar 

  • Holm A, Heumann T, Augustin HG (2018) Microvascular mural cell organotypic heterogeneity and functional plasticity. Trends Cell Biol 28(4):302–316

    Article  PubMed  Google Scholar 

  • Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A et al (2011) Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 29(2):274–285

    Article  CAS  PubMed  Google Scholar 

  • Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E et al (2016) Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci U S A 113(38):E5618–E5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosaka K, Yang Y, Nakamura M, Andersson P, Yang X, Zhang Y et al (2018) Dual roles of endothelial FGF-2-FGFR1-PDGF-BB and perivascular FGF-2-FGFR2-PDGFRbeta signaling pathways in tumor vascular remodeling. Cell Discov 4:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13(1):58–68

    Article  PubMed  CAS  Google Scholar 

  • Jia W, Lu R, Martin TA, Jiang WG (2014) The role of claudin-5 in blood-brain barrier (BBB) and brain metastases (review). Mol Med Rep 9(3):779–785

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Chu K, Lee ST, Bahn JJ, Jeon D, Kim JH et al (2011) Multipotent PDGFRbeta-expressing cells in the circulation of stroke patients. Neurobiol Dis 41(2):489–497

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Tajiri N, Staples M, Reyes S, Lozano D, Sanberg PR et al (2015) Bone marrow-derived stem cell therapy for metastatic brain cancers. Cell Transplant 24(4):625–630

    Article  PubMed  Google Scholar 

  • Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A et al (2012) Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One 7(2):e30563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122

    Article  CAS  PubMed  Google Scholar 

  • Korn J, Christ B, Kurz H (2002) Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 442(1):78–88

    Article  PubMed  Google Scholar 

  • Kovac A, Erickson MA, Banks WA (2011) Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation 8:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon YK (1997) Expression of brain-derived neurotrophic factor mRNA stimulated by basic fibroblast growth factor and platelet-derived growth factor in rat hippocampal cell line. Mol Cells 7(3):320–325

    CAS  PubMed  Google Scholar 

  • Leontovich AA, Jalalirad M, Salisbury JL, Mills L, Haddox C, Schroeder M et al (2018) NOTCH3 expression is linked to breast cancer seeding and distant metastasis. Breast Cancer Res 20(1):105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G (2018) Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 135(3):311–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    Article  CAS  PubMed  Google Scholar 

  • Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M et al (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17(15):1835–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA et al (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176(6):2958–2971

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu-Emerson C, Duda DG, Emblem KE, Taylor JW, Gerstner ER, Loeffler JS et al (2015) Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol 33(10):1197–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugassy C, Lazar V, Dessen P, van den Oord JJ, Winnepenninckx V, Spatz A et al (2011) Gene expression profiling of human angiotropic primary melanoma: selection of 15 differentially expressed genes potentially involved in extravascular migratory metastasis. Eur J Cancer 47(8):1267–1275

    Article  CAS  PubMed  Google Scholar 

  • Lugassy C, Wadehra M, Li X, Corselli M, Akhavan D, Binder SW et al (2013) Pilot study on “pericytic mimicry” and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. Cancer Microenviron 6(1):19–29

    Article  CAS  PubMed  Google Scholar 

  • Lugassy C, Kleinman HK, Vermeulen PB, Barnhill RL (2020) Angiotropism, pericytic mimicry and extravascular migratory metastasis: an embryogenesis-derived program of tumor spread. Angiogenesis 23(1):27–41

    Article  CAS  PubMed  Google Scholar 

  • Lyle LT, Lockman PR, Adkins CE, Mohammad AS, Sechrest E, Hua E et al (2016) Alterations in pericyte subpopulations are associated with elevated blood-tumor barrier permeability in experimental brain metastasis of breast cancer. Clin Cancer Res 22(21):5287–5299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma SC, Li Q, Peng JY, Zhouwen JL, Diao JF, Niu JX et al (2017) Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis. CNS Neurosci Ther 23(12):947–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machida T, Takata F, Matsumoto J, Takenoshita H, Kimura I, Yamauchi A et al (2015) Brain pericytes are the most thrombin-sensitive matrix metalloproteinase-9-releasing cell type constituting the blood-brain barrier in vitro. Neurosci Lett 599:109–114

    Article  CAS  PubMed  Google Scholar 

  • Manzur M, Hamzah J, Ganss R (2009) Modulation of g protein signaling normalizes tumor vessels. Cancer Res 69(2):396–399

    Article  CAS  PubMed  Google Scholar 

  • McCarty MF, Somcio RJ, Stoeltzing O, Wey J, Fan F, Liu W et al (2007) Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J Clin Invest 117(8):2114–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney R, Hammad M, Batalla-Covello J, Abdul Majid A, Aboody KS (2018) Concise review: neural stem cell-mediated targeted cancer therapies. Stem Cells Transl Med 7(10):740–747

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murgai M, Ju W, Eason M, Kline J, Beury DW, Kaczanowska S et al (2017) KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat Med 23(10):1176–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Aruga J (2019) Sphingosine 1-phosphate signaling is involved in impaired blood-brain barrier function in ischemia-reperfusion injury. Mol Neurobiol 57:1594–1606

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A et al (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54(3-4):253–263

    Article  CAS  PubMed  Google Scholar 

  • Nakagomi T, Molnar Z, Nakano-Doi A, Taguchi A, Saino O, Kubo S et al (2011) Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Dev 20(12):2037–2051

    Article  CAS  PubMed  Google Scholar 

  • Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A et al (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem cells (Dayton, Ohio) 33(6):1962–1974

    Article  CAS  Google Scholar 

  • Nakano-Doi A, Nakagomi T, Sakuma R, Takahashi A, Tanaka Y, Kawamura M et al (2016) Expression patterns and phenotypic changes regarding stemness in brainpericytes in health and disease. J Stem Cell Res & Therap 6(3):332

    Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N et al (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161(3):653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochs K, Sahm F, Opitz CA, Lanz TV, Oezen I, Couraud PO et al (2013) Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma. J Neuroimmunol 265(1-2):106–116

    Article  CAS  PubMed  Google Scholar 

  • Ozen I, Roth M, Barbariga M, Gaceb A, Deierborg T, Genove G et al (2018) Loss of regulator of G-protein signaling 5 leads to neurovascular protection in stroke. Stroke 49(9):2182–2190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paiva AE, Lousado L, Guerra DAP, Azevedo PO, Sena IFG, Andreotti JP et al (2018) Pericytes in the premetastatic niche. Cancer Res 78(11):2779–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes I, Chintawar S, Cader MZ (2018) Neurovascular dysfunction in dementia – human cellular models and molecular mechanisms. Clin Sci (Lond) 132(3):399–418

    Article  Google Scholar 

  • Patel RR, Mehta MP (2007) Targeted therapy for brain metastases: improving the therapeutic ratio. Clin Cancer Res 13(6):1675–1683

    Article  CAS  PubMed  Google Scholar 

  • Pecorino L (2016) Molecular biology of cancer : mechanisms, targets, and therapeutics, 4th edn. Oxford University Press, Oxford, p 375

    Google Scholar 

  • Pisati F, Belicchi M, Acerbi F, Marchesi C, Giussani C, Gavina M et al (2007) Effect of human skin-derived stem cells on vessel architecture, tumor growth, and tumor invasion in brain tumor animal models. Cancer Res 67(7):3054–3063

    Article  CAS  PubMed  Google Scholar 

  • Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol 124(6):763–775

    Article  PubMed  PubMed Central  Google Scholar 

  • Quintero-Fabian S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argaez V, Lara-Riegos J et al (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9:1370

    Article  PubMed  PubMed Central  Google Scholar 

  • Rafii S, Butler JM, Ding BS (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529(7586):316–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55(3):261–268

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro AL, Okamoto OK (2015) Combined effects of pericytes in the tumor microenvironment. Stem Cells Int 2015:868475

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodewald AK, Rushing EJ, Kirschenbaum D, Mangana J, Mittmann C, Moch H et al (2019) Eight autopsy cases of melanoma brain metastases showing angiotropism and pericytic mimicry. Implications for extravascular migratory metastasis. J Cutan Pathol 46(8):570–578

    Article  PubMed  Google Scholar 

  • Rolny C, Lu L, Agren N, Nilsson I, Roe C, Webb GC et al (2005) Shb promotes blood vessel formation in embryoid bodies by augmenting vascular endothelial growth factor receptor-2 and platelet-derived growth factor receptor-beta signaling. Exp Cell Res 308(2):381–393

    Article  CAS  PubMed  Google Scholar 

  • Roth M, Gaceb A, Enstrom A, Padel T, Genove G, Ozen I et al (2019) Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke. FASEB J 33(8):8990–8998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS pericytes. Brain Res Bull 51(5):363–369

    Article  CAS  PubMed  Google Scholar 

  • Saha B, Peron S, Murray K, Jaber M, Gaillard A (2013) Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem Cell Res 11(3):965–977

    Article  PubMed  Google Scholar 

  • Sakuma R, Kawahara M, Nakano-Doi A, Takahashi A, Tanaka Y, Narita A et al (2016) Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J Neuroinflammation 13(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV (2013) Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol 23(3):303–310

    Article  PubMed  Google Scholar 

  • Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrodder H, Jensen T et al (2004) Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 23(29):5095–5098

    Article  CAS  PubMed  Google Scholar 

  • Shah AC, Price KH, Parker JN, Samuel SL, Meleth S, Cassady KA et al (2006) Serial passage through human glioma xenografts selects for a Deltagamma134.5 herpes simplex virus type 1 mutant that exhibits decreased neurotoxicity and prolongs survival of mice with experimental brain tumors. J Virol 80(15):7308–7315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Ishii Y, Xu G, Dang TC, Hamashima T, Matsushima T et al (2012) PDGFR-beta as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 32(2):353–367

    Article  CAS  PubMed  Google Scholar 

  • Shumakovich MA, Mencio CP, Siglin JS (2017) Moriarty RA. Geller HM, Stroka KM. Astrocytes from the brain microenvironment alter migration and morphology of metastatic breast cancer cells. FASEB J

    Google Scholar 

  • Sieczkiewicz GJ, Herman IM (2003) TGF-beta 1 signaling controls retinal pericyte contractile protein expression. Microvasc Res 66(3):190–196

    Article  CAS  PubMed  Google Scholar 

  • Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27(10):842–846

    Article  CAS  PubMed  Google Scholar 

  • Su X, Huang L, Qu Y, Xiao D, Mu D (2019) Pericytes in cerebrovascular diseases: an emerging therapeutic target. Front Cell Neurosci 13:519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A et al (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111(12):1843–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19(6):771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M, Yamazaki Y, Liu CC, Bu G, Kanekiyo T (2018) Pericyte implantation in the brain enhances cerebral blood flow and reduces amyloid-beta pathology in amyloid model mice. Exp Neurol 300:13–21

    Article  CAS  PubMed  Google Scholar 

  • Takata F, Sumi N, Nishioku T, Harada E, Wakigawa T, Shuto H et al (2008) Oncostatin M induces functional and structural impairment of blood-brain barriers comprised of rat brain capillary endothelial cells. Neurosci Lett 441(2):163–166

    Article  CAS  PubMed  Google Scholar 

  • Teglasi V, Csury DT, Dezso K, Bugyik E, Szabo V, Szallasi Z et al (2019) Origin and distribution of connective tissue and pericytes impacting vascularization in brain metastases with different growth patterns. J Neuropathol Exp Neurol 78(4):326–339

    Article  CAS  PubMed  Google Scholar 

  • Teichert M, Milde L, Holm A, Stanicek L, Gengenbacher N, Savant S et al (2017) Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun 8:16106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thijssen VL, Paulis YW, Nowak-Sliwinska P, Deumelandt KL, Hosaka K, Soetekouw PM et al (2018) Targeting PDGF-mediated recruitment of pericytes blocks vascular mimicry and tumor growth. J Pathol 246(4):447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209(4):493–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzunalli G, Dieterly AM, Kemet CM, Weng HY, Soepriatna AH, Goergen CJ et al (2019) Dynamic transition of the blood-brain barrier in the development of non-small cell lung cancer brain metastases. Oncotarget 10(59):6334–6348

    Article  PubMed  PubMed Central  Google Scholar 

  • Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ et al (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156(5):1002–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78(2):203–212

    Article  PubMed  CAS  Google Scholar 

  • Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554(7693):475–480

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, Cui YL, Zaorsky NG, Lan J, Deng L, Zeng XL et al (2016) Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Lett 375(2):349–359

    Article  CAS  PubMed  Google Scholar 

  • Wasilewski D, Priego N, Fustero-Torre C, Valiente M (2017) Reactive astrocytes in brain metastasis. Front Oncol 7:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Weidle UH, Birzele F, Kollmorgen G, Ruger R (2017) The multiple roles of exosomes in metastasis. Cancer Genomics Proteomics 14(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Welen K, Jennbacken K, Tesan T, Damber JE (2009) Pericyte coverage decreases invasion of tumour cells into blood vessels in prostate cancer xenografts. Prostate Cancer Prostatic Dis 12(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm I, Fazakas C, Molnar K, Vegh AG, Hasko J, Krizbai IA (2018) Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. J Cereb Blood Flow Metab 38(4):563–587

    Article  PubMed  Google Scholar 

  • Yamaguchi S, Horie N, Satoh K, Ishikawa T, Mori T, Maeda H et al (2018) Age of donor of human mesenchymal stem cells affects structural and functional recovery after cell therapy following ischaemic stroke. J Cereb Blood Flow Metab 38(7):1199–1212

    Article  PubMed  Google Scholar 

  • Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H et al (2017) A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci Rep 7(1):3855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamanishi E, Takahashi M, Saga Y, Osumi N (2012) Penetration and differentiation of cephalic neural crest-derived cells in the developing mouse telencephalon. Dev Growth Differ 54(9):785–800

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Mukouyama YS (2018) Tissue specific origin, development, and pathological perspectives of pericytes. Front Cardiovasc Med 5:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yong VW (2005) Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 6(12):931–944

    Article  CAS  PubMed  Google Scholar 

  • Yoshimasu T, Sakurai T, Oura S, Hirai I, Tanino H, Kokawa Y et al (2004) Increased expression of integrin alpha3beta1 in highly brain metastatic subclone of a human non-small cell lung cancer cell line. Cancer Sci 95(2):142–148

    Article  CAS  PubMed  Google Scholar 

  • Youn SW, Jung KH, Chu K, Lee JY, Lee ST, Bahn JJ et al (2015) Feasibility and safety of intra-arterial pericyte progenitor cell delivery following mannitol-induced transient blood-brain barrier opening in a canine model. Cell Transplant 24(8):1469–1479

    Article  PubMed  Google Scholar 

  • Yuan X, Wu Q, Wang P, Jing Y, Yao H, Tang Y et al (2019) Exosomes derived from pericytes improve microcirculation and protect blood-spinal cord barrier after spinal cord injury in mice. Front Neurosci 13:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Takahashi HK, Liu K, Wake H, Liu R, Maruo T et al (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42(5):1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Najbauer J, Annala AJ, Garcia E, Metz MZ, Gutova M et al (2012) Human neural stem cell tropism to metastatic breast cancer. Stem Cells 30(2):314–325

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV (2015) Establishment and dysfunction of the blood-brain barrier. Cell 163(5):1064–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonneville J, Safina A, Truskinovsky AM, Arteaga CL, Bakin AV (2018) TGF-beta signaling promotes tumor vasculature by enhancing the pericyte-endothelium association. BMC Cancer 18(1):670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Masami Niwa (Emeritus Professor of Nagasaki University/PhamaCocell Company Ltd., Japan), Maria A. Deli (Biological Research Centre, Hungary), and William A. Banks (Veterans Affairs Puget Sound Health Care System and University of Washington, USA) for helpful discussions in preparing the manuscript. We wish to thank Kei Sato, Yuki Matsunaga, Yusuke Iki, Nobutaka Horie, and Tsuyoshi Izumo for providing insights and expertise that greatly assisted in the preparation of this manuscript, although they may not agree with all of the interpretations/conclusions of this paper.

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was partially funded by JSPS and HAS under the Japan-Hungary Research Cooperative Program (to Y.M. and S.N.), Grants-in-Aid for Scientific Research (Fostering Joint International Research) 15KK0349 (to Y.M.), Grants-in-Aid for Scientific Research (C) 17K10840 (to Y.M.), and (C) 17K10838 (to S.N.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morofuji, Y., Nakagawa, S., Fujimoto, T., Yamaguchi, S., Ujifuku, K., Matsuo, T. (2021). Biology of Pericytes – Recent Advances: Role of Pericytes in Brain Metastasis. In: Birbrair, A. (eds) Biology of Pericytes – Recent Advances. Stem Cell Biology and Regenerative Medicine, vol 68. Humana, Cham. https://doi.org/10.1007/978-3-030-62129-2_3

Download citation

Publish with us

Policies and ethics