Skip to main content

Gut Microbiota Biomarkers in Autism Spectrum Disorders

  • Chapter
  • First Online:
Psychiatry and Neuroscience Update

Abstract

Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by impairments in social and cognitive functions. Although the exact etiology of ASDs remains unclear, it is thought to be caused by a combination of genetic predisposition and environmental factors. ASD patients often show comorbid medical conditions, including gastrointestinal (GI) symptoms. An increasing number of evidences point to the importance of the “gut-brain axis” in the pathogenesis of ASDs, and interestingly GI disorders have a strong correlation with the severity of brain. Neuroinflammation has been described as a consequence of an increased GI permeability caused by intestinal inflammation. The gut microbiota is a diverse community of microorganisms living in the GI tract. Several studies have reported compositional differences in the gut microbiota (dysbiosis) and microbial metabolites in patients with ASDs and GI disorders. The gut microbiota and its metabolic products may influence several aspects of brain function and behavior through a variety of neuroendocrine, immune, and metabolic mechanisms. Metabolomics profiles are widely used for quantitative assessments of metabolites of biosynthetic and catabolic pathways, neuroactive molecules, as well as biomarkers closed linked to the microbiota. Therefore, metabolomics is a useful tool for the detection of biochemical mechanisms influenced by gut microbiota that provides a unique insight to characterize individual phenotypes in ASD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Association Arlington; 2013.

    Book  Google Scholar 

  2. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9(5):34–55.

    Article  CAS  Google Scholar 

  3. Roberts AL, Lyall K, Hart JE, Laden F, Just AC, Bobb JF, Koenen KC, Ascherio A, Weisskopf MG. Perinatal air pollutant exposures and autism spectrum disorder in the children of Nurses’ Health Study II participants. Environ Health Perspect. 2013;121:978.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pietropaolo S, Crusio WE, Feldon J. Gene-environment interactions in neurodevelopmental disorders. Neural Plast. 2017;2017:9272804.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cenit MC, Sanz Y, Codoñer-Franch P. Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol. 2017;23(30):5486–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & amp behaviour- epigenetic regulation of the gut-brain axis. Genes Brain Behav. 2014;13:69–86.

    Article  CAS  PubMed  Google Scholar 

  7. Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007;8:355–67.

    Article  CAS  PubMed  Google Scholar 

  8. Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16:469–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Korkmaz B. Autism spectrum disorders, early signs. In: Korkmaz B, Njiokiktjien C, Verschoor C, editors. Children’s social relatedness: an embodied brain process. A clinical view of typical development and disorders. Amsterdam: Suyi Publications; 2013. p. 509–605.

    Google Scholar 

  10. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011;25(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  11. McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a metaanalysis. Pediatrics. 2014;133(5):872–83.

    Article  PubMed  Google Scholar 

  12. Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun. 2012;26(3):383–92.

    Article  CAS  PubMed  Google Scholar 

  13. Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol Lett. 2015;163(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  14. Coury DL, Ashwood P, Fasano A, Fuchs G, Geraghty M, Kaul A, Mawe G, Patterson P, Jones NE. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics. 2012;130:S160–8.

    Article  PubMed  Google Scholar 

  15. Doenyas C. Gut microbiota, inflammation, and probiotics on neural development in autism spectrum disorder. Neuroscience. 2018;374:271–86.

    Article  CAS  PubMed  Google Scholar 

  16. The Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207.

    Article  CAS  Google Scholar 

  17. Xu J, Gordon JI. Inaugural article: honor thy symbionts. Proc Natl Acad Sci USA. 2003;100:10452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tannock GW. New perceptions of the gut microbiota: implications for future research. Gastroenterol Clin North Am. 2005;34:361–82.

    Article  PubMed  Google Scholar 

  19. Xu J, Mahowald M, Ley R, Lozupone C, Hamady M, Martens E, Henrissat B, Coutinho P, Minx P, Latreille P, Cordum H, Van Brunt A, Kim K, Fulton R, Fulton L, Clifton S, Wilson R, Knight R, Gordon J. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 2007;5:1574–86.

    Article  CAS  Google Scholar 

  20. Obata Y, Furusawa Y, Hase K. Epigenetic modifications of the immune system in health and disease. Immunol Cell Biol. 2015;93:226–32.

    Article  CAS  PubMed  Google Scholar 

  21. Tordjman S, Somogyi E, Coulon N, et al. Gene x environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psych. 2014;5:53.

    Google Scholar 

  22. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8(4):253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross talk: the microbiota and neurodevelopmental disorders. Front Neurosci. 2017;11:490.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aw W, Fukuda S. Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach. Semin Immunopathol. 2015;37(1):5–16.

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26(1):26050.

    PubMed  Google Scholar 

  27. Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535(7610):85–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. Short-chain fatty acids stimulate glucagon like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106:3698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berding K, Donovan SM. Microbiome and nutrition in autism spectrum disorder: current knowledge and research needs. Nutr Rev. 2016;74(12):723–36. Review.

    Article  PubMed  Google Scholar 

  33. Cénit MC, Matzaraki V, Tigchelaar EF, Zhernakova A. Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophys Acta. 2014;1842(10):1981–92.

    Article  PubMed  CAS  Google Scholar 

  34. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.

    Article  CAS  PubMed  Google Scholar 

  36. Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7(12):887–94.

    Article  CAS  PubMed  Google Scholar 

  37. Hughes HK, Rose D, Ashwood P. The gut microbiota and dysbiosis in autism spectrum disorders. Curr Neurol Neurosci Rep. 2018;18(11):81.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:1–12.

    Article  PubMed  CAS  Google Scholar 

  40. Ding HT, Taur Y, Walkup JT. Gut microbiota and autism: key concepts and findings. J Autism Dev Disord. 2017;47(2):480–9.

    Article  PubMed  Google Scholar 

  41. Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol. 2018;6(2):133–48.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, KD MC, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C. Gamma-aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113(2):411–7.

    Article  CAS  PubMed  Google Scholar 

  46. Minuk GY. Gamma-aminobutyric-acid (Gaba) production by common bacterial pathogens. Scand J Infect Dis. 1986;18:465–7.

    Article  CAS  PubMed  Google Scholar 

  47. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays. 2011;33(8):574–81.

    Article  CAS  PubMed  Google Scholar 

  48. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1288–95.

    Article  CAS  PubMed  Google Scholar 

  49. Louis P. Does the human gut microbiota contribute to the etiology of autism spectrum disorders? Dig Dis Sci. 2012;57:1987–9.

    Article  PubMed  Google Scholar 

  50. Mangiola F, Laniro G, Franceschi F, Fagiuoli S, Gasbarrini G, Gasbarrini A. Gut microbiota in autism and mood disorders. World J Gastroenterol. 2016;22:361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 2016;167:915–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ozogul F. Effects of specific lactic acid bacteria species on biogenic amine production by foodborne pathogen. Int J Food Sci Tech. 2011;46:478–84.

    Article  CAS  Google Scholar 

  53. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Park AJ, Collins J, Blennerhassett PA, Ghia JE, Verdu EF, Bercik P, Collins SM. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil. 2013;25:733–e575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–41.

    Article  CAS  PubMed  Google Scholar 

  56. Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry. 2017;81:411–23.

    Article  PubMed  Google Scholar 

  57. Buie T, Campbell DB, Fuchs GJ 3rd, Furuta GT, Levy J, Vandewater J, Whitaker AH, Atkins D, Bauman ML, Beaudet AL, Carr EG, Gershon MD, Hyman SL, Jirapinyo P, Jyonouchi H, Kooros K, Kushak R, Levitt P, Levy SE, Lewis JD, Murray KF, Natowicz MR, Sabra A, Wershil BK, Weston SC, Zeltzer L, Winter H. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics. 2010;125 Suppl 1:S1–18.

    Google Scholar 

  58. Kang DW, Ilhan ZE, Isern NG, Hoyt DW, Howsmon DP, Shaffer M, Lozupone CA, Hahn J, Adams JB, Krajmalnik-Brown R. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018;49:121–31.

    Article  CAS  PubMed  Google Scholar 

  59. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-Brown R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013;8(7):e68322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, Jousson O, Leoncini S, Renzi D, Calabrò A, De Filippo C. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol. 2011;77(18):6718–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, Bennett A, Jabado O, Hirschberg DL, Lipkin WI. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One. 2011;6(9):e24585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis. 2002;35(Suppl 1):S6–s16.

    Article  PubMed  Google Scholar 

  64. Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostatnikova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav. 2015;138:179–87.

    Article  CAS  PubMed  Google Scholar 

  65. Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol. 2005;54(Pt 10):987–91.

    Article  PubMed  Google Scholar 

  66. Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol. 2004;70(11):6459–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cui L, Morris A, Ghedin E. The human mycobiome in health and disease. Genome Med. 2013;5(7):63.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li Q, Wang C, Tang C, He Q, Li N, Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn's disease. J Clin Gastroenterol. 2014;48(6):513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hughes HK, Rose D, Ashwood P. The gut microbiota and dysbiosis in autism spectrum disorders. Curr Neurol Neurosci Rep. 2018;18(11):81.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kantarcioglu AS, Kiraz N, Aydin A. Microbiota-gut-brain Axis: yeast species isolated from stool samples of children with suspected or diagnosed autism Spectrum disorders and in vitro susceptibility against nystatin and fluconazole. Mycopathologia. 2016;181(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  71. Gieger C, Geistlinger L, Altmaier E, Hrabé de Angelis M, Kronenberg F, Meitinger T, Mewes HW, Wichmann HE, Weinberger KM, Adamski J, Illig T, Suhre K. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008;4(11):e1000282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype phenotype interactions. Nat Rev Genet. 2015;16(2):85–97.

    Article  CAS  PubMed  Google Scholar 

  73. Mussap M, Noto A, Fanos V. Metabolomics of autism spectrum disorders: early insights regarding mammalian-microbial cometabolites. Expert Rev Mol Diagn. 2016;16(8):869–81.

    Article  CAS  PubMed  Google Scholar 

  74. Noto A, Fanos V, Barberini L, Grapov D, Fattuoni C, Zaffanello M, Casanova A, Fenu G, De Giacomo A, De Angelis M, Moretti C, Papoff P, Ditonno R, Francavilla R. The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings. J Matern Fetal Neonatal Med. 2014;27(Sup2):46–52.

    Article  CAS  PubMed  Google Scholar 

  75. Clark-Taylor TB, Clark-Taylor E. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase. Med Hypotheses. 2004;62(6):970–5.

    Article  CAS  PubMed  Google Scholar 

  76. Boulat O, Gradwohl M, Matos V, Guignard JP, Bachmann C. Organic acids in the second morning urine in a healthy Swiss Paediatric population. Clin Chem Lab Med. 2003;41:1642–58.

    Article  CAS  PubMed  Google Scholar 

  77. Kumps A, Duez P, Mardens Y. Metabolic, nutritional and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem. 2002;48:708–17.

    CAS  PubMed  Google Scholar 

  78. Goh S, Dong Z, Zhang Y, Di Mauro S, Peterson BS. Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA Psychiat. 2014;71(6):665–71.

    Article  Google Scholar 

  79. Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17(3):290–314.

    Article  CAS  PubMed  Google Scholar 

  80. Kałużna-Czaplińska J, Socha E, Rynkowski J. Determination of homovanillic acid and vanillylmandelic acid in urine of autistic children by gas chromatography/ mass spectrometry. Med Sci Monit. 2010;16(9):445–50.

    Google Scholar 

  81. Shaw W, Kassen E, Chaves E. Increased urinary excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features. Clin Chem. 1995;41(8 Pt1):1094–104.

    Article  CAS  PubMed  Google Scholar 

  82. Kałużna-Czaplińska J. Noninvasive urinary organic acids test to assess biochemical and nutritional individuality in autistic children. Clin Biochem. 2011;44(8–9):686–91.

    Article  PubMed  CAS  Google Scholar 

  83. Kałużna-Czaplińska J, Żurawicz E, Struck W, Markuszewski M. Identification of organic acids as potential biomarkers in the urine of autistic children using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;966:70–6.

    Article  PubMed  CAS  Google Scholar 

  84. Bjørklund G, Meguid NA, El-Ansary A, El-Bana MA, Dadar M, Aaseth J, Hemimi M, Osredkar J, Chirumbolo S. Diagnostic and severity-tracking biomarkers for autism spectrum disorder. J Mol Neurosci. 2018;66(4):492–511.

    Article  PubMed  CAS  Google Scholar 

  85. Reig M, Molina D, Loza E, Ledesma MA, Meseguer MA. Gas-liquid chromatography in routine processing of blood cultures for detecting anaerobic bacteraemia. J Clin Pathol. 1981;34(2):189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yap IK, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res. 2010;9(6):2996–3004.

    Article  CAS  PubMed  Google Scholar 

  87. Emond P, Mavel S, Aïdoud N, Nadal-Desbarats L, Montigny F, Bonnet-Brilhault F, Barthélémy C, Merten M, Sarda P, Laumonnier F, Vourc'h P, Blasco H, Andres CR. GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem. 2013;405(15):5291–300.

    Article  CAS  PubMed  Google Scholar 

  88. Mavel S, Nadal-Desbarats L, Blasco H, Bonnet-Brilhault F, Barthélémy C, Montigny F, Sarda P, Laumonnier F, Vourc'h P, Andres CR, Emond P. 1H-13C NMR-based urine metabolic profiling in autism spectrum disorders. Talanta. 2013;114:95–102.

    Article  CAS  PubMed  Google Scholar 

  89. Nadal-Desbarats L, Aïdoud N, Emond P, Blasco H, Filipiak I, Sarda P, Bonnet-Brilhault F, Mavel S, Andres CR. Combined 1H-NMR and 1H-13C HSQC-NMR to improve urinary screening in autism spectrum disorders. Analyst. 2014;139(13):3460–8.

    Article  CAS  PubMed  Google Scholar 

  90. West PR, Amaral DG, Bais P, Smith AM, Egnash LA, Ross ME, Palmer JA, Fontaine BR, Conard KR, Corbett BA, Cezar GG, Donley EL, Burrier RE. Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS One. 2014;9(11):e112445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Triggs WJ, Roe CR, Rhead WJ, Hanson SK, Lin SN, Willmore LJ. Neuropsychiatric manifestations of defect in mitochondrial beta oxidation response to riboflavin. J Neurol Neurosurg Psychiatry. 1992;55:209–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kurian MA, Ryan S, Besley GT, Wanders RJ, King MD. Straight-chain acyl-CoA oxidase deficiency presenting with dysmorphia, neurodevelopmental autistic-type regression and a selective pattern of leukodystrophy. J Inherit Metab Dis. 2004;27(1):105–8.

    Article  CAS  PubMed  Google Scholar 

  93. Treacy E, Pitt J, Eggington M, Hawkins R. Dicarboxylic aciduria, significance and prognostic indications. Eur J Pediatr. 1994;153(12):918.

    Article  CAS  PubMed  Google Scholar 

  94. Kałużna-Czaplińska J, Socha E, Rynkowski J. B vitamin supplementation reduces excretion of urinary dicarboxylic acids in autistic children. Nutr Res. 2011;31(7):497–502.

    Article  PubMed  CAS  Google Scholar 

  95. Gollnick H. Azelaic acid: pharmacology, toxicology and mechanisms of action on keratinization in vitro and in vivo. J Dermatol Treat. 1993;4(Sup1):S3–7.

    Article  Google Scholar 

  96. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.

    Article  CAS  PubMed  Google Scholar 

  97. Ming X, Stein TP, Barnes V, Rhodes N, Guo L. Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res. 2012;11(12):5856–62.

    Article  CAS  PubMed  Google Scholar 

  98. Diémé B, Mavel S, Blasco H, Tripi G, Bonnet-Brilhault F, Malvy J, Bocca C, Andres CR, Nadal-Desbarats L, Emond P. Metabolomics study of urine in autism Spectrum disorders using a multiplatform analytical methodology. J Proteome Res. 2015;14(12):5273–82.

    Article  PubMed  CAS  Google Scholar 

  99. Gevi F, Zolla L, Gabriele S, Persico AM. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism. 2016;7:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Milliner DS. The primary hyperoxalurias: an algorithm for diagnosis. Am J Nephrol. 2005;25:154–60.

    Article  PubMed  Google Scholar 

  101. Konstantynowicz J, Porowski T, Zoch-Zwierz W, Wasilewska J, Kadziela-Olech H, Kulak W, Owens SC, Piotrowska-Jastrzebska J, Kaczmarski M. A potential pathogenic role of oxalate in autism. Eur J Paediatr Neurol. 2012;16(5):485–91.

    Article  PubMed  Google Scholar 

  102. Kałużna-Czaplińska J, Zurawicz E, Jóźwik J. Chromatographic techniques coupled with mass spectrometry for the determination of organic acids in the study of autism. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;964:128–35.

    Article  PubMed  CAS  Google Scholar 

  103. Beloborodova N, Bairamov I, Olenin A, Shubina V, Teplova V, Fedotcheva N. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. J Biomed Sci. 2012;19:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mrochek JE, Dinsmore SR, Ohrt DW. Monitoring phenylalanine-tyrosine metabolism by high-resolution liquid chromatography of urine. Clin Chem. 1973;19(8):927–36.

    Article  CAS  PubMed  Google Scholar 

  105. Jacobs DM, Spiesser L, Garnier M, de Roo N, van Dorsten F, Hollebrands B, van Velzen E, Draijer R, van Duynhoven J. SPE-NMR metabolite sub-profiling of urine. Anal Bioanal Chem. 2012;404(8):2349–61.

    Article  CAS  PubMed  Google Scholar 

  106. Shaw W. Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite of Clostridia spp. in the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutr Neurosci. 2010;13(3):135–43.

    Article  CAS  PubMed  Google Scholar 

  107. Xiong X, Liu D, Wang Y, Zeng T, Peng Y. Urinary 3-(3-hydroxyphenyl)-3-hydroxypropionic acid, 3-hydroxyphenylacetic acid, and 3-hydroxyhippuric acid are elevated in children with autism spectrum disorders. Biomed Res Int. 2016;2016:9485412.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gabriele S, Sacco R, Cerullo S, Neri C, Urbani A, Tripi G, Malvy J, Barthelemy C, Bonnet-Brihault F, Persico AM. Urinary p-cresol is elevated in young French children with autism spectrum disorder: a replication study. Biomarkers. 2014;19(6):463–70.

    Article  CAS  PubMed  Google Scholar 

  109. Gabriele S, Sacco R, Altieri L, Neri C, Urbani A, Bravaccio C, Riccio MP, Iovene MR, Bombace F, De Magistris L, Persico AM. Slow intestinal transit contributes to elevate urinary p-cresol level in Italian autistic children. Autism Res. 2016;9(7):752–9.

    Article  PubMed  Google Scholar 

  110. Altieri L, Neri C, Sacco R, Curatolo P, Benvenuto A, Muratori F, Santocchi E, Bravaccio C, Lenti C, Saccani M, Rigardetto R, Gandione M, Urbani A, Persico AM. Urinary p-cresol is elevated in small children with severe autism spectrum disorder. Biomarkers. 2011;16(3):252–60.

    Article  CAS  PubMed  Google Scholar 

  111. Persico AM, Napolioni V. Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol. 2013;36:82–90.

    Article  CAS  PubMed  Google Scholar 

  112. Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ, Soininen P, Wang Z, Ala-Korpela M, Hazen SL, Laakso M, Lusis AJ. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017;18(1):70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Shinka T, Inoue Y, Ohse M, Ito A, Ohfu M, Hirose S, Kuhara T. Rapid and sensitive detection of urinary 4-hydroxybutyric acid and its related compounds by gas chromatography-mass spectrometry in a patient with succinic semialdehyde dehydrogenase deficiency. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;776:57–63.

    Article  CAS  PubMed  Google Scholar 

  114. Pearl PL, Gibson KM, Acosta MT, Vezina LG, Theodore WH, Rogawski MA, Novotny EJ, Gropman A, Conry JA, Berry GT, Tuchman M. Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology. 2003;60:1413–7.

    Article  CAS  PubMed  Google Scholar 

  115. Huck JH, Verhoeven NM, Struys EA, Salomons GS, Jakobs C, van der Knaap MS. Ribose-5-phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet. 2004;74:745–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Anderson RL, Allison DP. Purification and characterization of D-lyxose isomerase. J Biol Chem. 1965;210:2367–72.

    Article  Google Scholar 

  117. Sigmundsdóttir G, Christensson B, Björklund LJ, Håkansson K, Pehrson C, Larsson L. Urine D-arabinitol/L-arabinitol ratio in diagnosis of invasive candidiasis in newborn infants. J Clin Microbiol. 2000;38(8):3039–42.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kałużna-Czaplińska J, Błaszczyk S. The level of arabinitol in autistic children after probiotic therapy. Nutrition. 2012;28:124–6.

    Article  PubMed  CAS  Google Scholar 

  119. White JF. Intestinal pathophysiology in autism. Exp Biol Med (Maywood). 2003;228(6):639–49.

    Article  CAS  Google Scholar 

  120. Reichelt KL, Tveiten D, Knivsberg AM, Brønstad G. Peptides' role in autism with emphasis on exorphins. Microb Ecol Health Dis. 2012;24:23.

    Google Scholar 

  121. Cade R, Privette M, Fregly M, Rowland N, Sun Z, Zele V, Wagemaker H, Edelstein C. Autism and schizophrenia: intestinal disorders. Nutr Neurosci. 2000;3(1):57–72.

    Article  CAS  PubMed  Google Scholar 

  122. Shattock P, Whiteley P. Biochemical aspects in autism spectrum disorders: updating the opioid-excess theory and presenting new opportunities for biomedical intervention. Expert Opin Ther Targets. 2002;6(2):1–9.

    Google Scholar 

  123. Knivsberg AM, Reichelt KL, Høien T, Nødland M. A randomised, controlled study of dietary intervention in autistic syndromes. Nutr Neurosci. 2002;5(4):251–61.

    Article  CAS  PubMed  Google Scholar 

  124. Martin FP, Collino S, Rezzi S, Kochhar S. Metabolomic applications to decipher gut microbial metabolic influence in health and disease. Front Physiol. 2012;3:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delgado, M.A., Fochesato, A., Juncos, L.I., Gargiulo, P.Á. (2021). Gut Microbiota Biomarkers in Autism Spectrum Disorders. In: Gargiulo, P.Á., Mesones Arroyo, H.L. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-030-61721-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61721-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61720-2

  • Online ISBN: 978-3-030-61721-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics