Skip to main content

Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis (UNSURE 2020, GRAIL 2020)

Abstract

The varying cortical geometry of the brain creates numerous challenges for its analysis. Recent developments have enabled learning cortical data directly across multiple brain surfaces via graph convolutions. However, current graph learning algorithms fail when brain surface data are misaligned across subjects, thereby requiring to apply a costly alignment procedure in pre-processing. Adversarial training is widely used for unsupervised domain adaptation to improve segmentation performance on target data whose distribution differs from the training source data. In this paper, we exploit this technique to learn surface data across inconsistent graph alignments. This novel approach comprises a segmentator that uses graph convolution layers to enable parcellation across brain surfaces of varying geometry, and a discriminator that predicts the alignment-domain of surfaces from their segmentation. By trying to fool the discriminator, the adversarial training learns an alignment-invariant representation which yields consistent parcellations for differently-aligned surfaces. Using manually-labeled brain surface from MindBoggle, the largest publicly available dataset of this kind, we demonstrate a 2%–13% improvement in mean Dice over a non-adversarial training strategy, for test brain surfaces with no alignment or aligned on a different reference than source examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D.: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage 145, 137–165 (2017)

    Google Scholar 

  2. Klein, A., et al.: Mindboggling morphometry of human brains. PLOS Comput. Biol. 13, e1005350 (2017)

    Google Scholar 

  3. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2019)

    Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  5. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  6. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

  7. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  8. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  9. Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to x-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 599–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_67

    Chapter  Google Scholar 

  10. Javanmardi, M., Tasdizen, T.: Domain adaptation for biomedical image segmentation using adversarial training. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE (2018)

    Google Scholar 

  11. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning (2015)

    Google Scholar 

  12. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning (2015)

    Google Scholar 

  13. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  14. Hoffman, J., Wang, D., Yu, F., Darrell, T.: Fcns in the wild: pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)

  15. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: International Conference on Information Processing in Medical Imaging (2017)

    Google Scholar 

  16. Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ayed, I.B.: Constrained domain adaptation for segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2019)

    Google Scholar 

  17. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. 34, 18–42 (2017)

    Google Scholar 

  18. Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., Bronstein, M.: Geometric deep learning on graphs using mixture model CNNs. In: CVPR (2017)

    Google Scholar 

  19. Cucurull, G., et al.: Convolutional neural networks for mesh-based parcellation of the cerebral cortex. In: MIDL (2018)

    Google Scholar 

  20. Gopinath, K., Desrosiers, C., Lombaert, H.: Graph convolutions on spectral embeddings for cortical surface parcellation. Med. Image Anal. 54, 297–305 (2019)

    Google Scholar 

  21. Bruna, J., Zaremba, W., Szlam, A., Lecun, Y.: Spectral networks and locally connected networks on graphs. In: ICLR (2014)

    Google Scholar 

  22. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS (2016)

    Google Scholar 

  23. Lombaert, H., Criminisi, A., Ayache, N.: Spectral forests: learning of surface data, application to cortical parcellation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 547–555. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_67

    Chapter  Google Scholar 

  24. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  25. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

Download references

Acknowledgments

This research work was partly funded by the Fonds de Recherche du Quebec (FQRNT) and Natural Sciences and Engineering Research Council of Canada (NSERC). We gratefully acknowledge the support of NVIDIA Corporation for the donation of the Titan X Pascal GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Gopinath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gopinath, K., Desrosiers, C., Lombaert, H. (2020). Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis. UNSURE GRAIL 2020 2020. Lecture Notes in Computer Science(), vol 12443. Springer, Cham. https://doi.org/10.1007/978-3-030-60365-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60365-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60364-9

  • Online ISBN: 978-3-030-60365-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics