Skip to main content
Log in

Kinematic and geochronological constraints on shear deformation in the Ferriere-Mollières shear zone (Argentera-Mercantour Massif, Western Alps): implications for the evolution of the Southern European Variscan Belt

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In the Western Alps, a steeply dipping km-scale shear zone (the Ferriere-Mollières shear zone) cross-cuts Variscan migmatites in the Argentera-Mercantour External Crystalline Massif. Structural analysis joined with kinematic vorticity and finite strain analyses allowed to recognize a high-temperature deformation associated with dextral transpression characterized by a variation in the percentage of pure shear and simple shear along a deformation gradient. U–Th–Pb dating of syn-kinematic monazites was performed on mylonites. The oldest ~ 340 Ma ages were obtained in protomylonites, whereas ages of ~ 320 Ma were found in mylonites from the core of the shear zone. These ages indicate that the Ferriere-Mollières shear zone is a still preserved Variscan shear zone. Ages of ~ 320 Ma obtained in this work are in agreement with ages of the dextral transpressional shear zones occurring in the Maures-Tanneron Massif and Corsica-Sardinia. However, transpression in the Argentera-Mercantour Massif started earlier than in other sectors of the southern Variscan Belt. This is possibly caused by the curvature of the belt triggering the progressive migration of shear deformation. Our data allow a correlation between the Argentera-Mercantour Massif and other segments of the Southern European Variscan Belt, in particular with Maures-Tanneron Massif and Corsica-Sardinia, and contribute to fill a gap in the age of activity and in the kinematics of the flow of the system of dextral shear zones of the southern portion of the EVSZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Advokaat EL, van Hinsbergen DJJ, Maffione M, Langereis CG, Vissers RLM, Cherchi A, Schroeder R, Madani H, Columbu S (2014) Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region. Earth Planet Sci Lett 401:183–195. https://doi.org/10.1016/j.epsl.2014.06.012

    Google Scholar 

  • Arthaud F, Matte P (1977) Late Paleozoic strikeslip faulting in southern Europe and northern Africa: results of a right-lateral shear zone between the Appalachians and Urals. Geol Soc Am Bull 88:1305–1320

    Google Scholar 

  • Baietto A, Perello P, Cadoppi P, Martinotti G (2009) Alpine tectonic evolution and thermal water circulations of the Argentera Massif (South-Western Alps). Swiss J Geosci 102(2):223–245

    Google Scholar 

  • Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. CR Geosci 341:174–201

    Google Scholar 

  • Barale L, Bertok C, D’atri A, Martire L, Piana F, Domini G (2016) Geology of the Entracque–Colle di Tenda area (Maritime Alps, NW Italy). J Maps 12:359–370

    Google Scholar 

  • Bellot J-P (2005) The Palaeozoic evolution of the Maures massif (France) and its potential correlation with other areas of the Variscan belt: a review. In: Carosi R, Dias R, Iacopini D, Rosenbaum G (eds). The southern Variscan belt. Journal of the virtual explorer, Electronic Edition, vol. 19, pp 1441–8142

  • Brun JP, Burg JP (1982) Combined thrusting and wrenching in the Ibero-Armorican arc: a corner effect during continental collision. Earth Planet Sci Lett 61(2):319–332

    Google Scholar 

  • Burg J-P, Matte P (1978) A cross section through the French Massif Central and the scope of its Variscan Geodynamic Evolution. Z der Deutsch Geologischen Ges 129:429–460

    Google Scholar 

  • Bussy F, Von Raumer J (1993) U-Pb dating of Paleozoic events in the Mont Blanc Cristalline Massif, Western Alps. Terra Abstract EUG07, Strasbourg, pp 382–383

  • Carosi R, Palmeri R (2002) Orogen-parallel tectonic transport in the Variscan belt of northeastern Sardinia (Italy): implications for the exhumation of medium-pressure metamorphic rocks. Geol Mag 139:497–511

    Google Scholar 

  • Carosi R, Frassi C, Iacopini D, Montomoli C (2005) Post-collisional transpressive tectonic in northern Sardinia. In: Carosi R, Dias R, Iacopini D, Rosenbaum G (eds), The Southern Variscan Belt, Electronic Edition, Journal of the Virtual Explorer, vol 19, pp 1441–8142

  • Carosi R, Montomoli C, Rubatto D, Visonà D (2006) Normal-sense shear zones in the core of the Higher Himalayan Crystallines (Bhutan Himalayas): evidence for extrusion? In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones, Special Publications. Geological Society, London, vol 268, pp 425–444

    Google Scholar 

  • Carosi R, Montomoli C, Visonà D (2007) A structural transect in the Lower Dolpo: Insights on the tectonic evolution of western Nepal. J Asian Earth Sci 29:407–423

    Google Scholar 

  • Carosi R, Frassi C, Montomoli C (2009) Deformation during exhumation of medium- and high-grade metamorphic rocks in the Variscan chain in northern Sardinia (Italy). Geol J 44:280–305

    Google Scholar 

  • Carosi R, Montomoli C, Rubatto D, Visonà D (2010) Late Oligocene high-temperature shear zones in the core of the Higher Himalayan Crystallines (Lower Dolpo, western Nepal). Tectonics 29:TC4029. https://doi.org/10.1029/2008TC002400

    Google Scholar 

  • Carosi R, Montomoli C, Tiepolo M, Frassi C (2012) Geochronological constraints on post-collisional shear zones in the Variscides of Sardinia (Italy). Terra Nova 24:42–51

    Google Scholar 

  • Carosi R, Montomoli C, Iaccarino S, Massonne HJ, Rubatto D, Langone A, Gemignani L, Visonà D (2016a) Middle to late Eocene exhumation of the Greater Himalayan Sequence in the Central Himalayas: Progressive accretion from the Indian plate. Geol Soc Am Bull 128:9–10. https://doi.org/10.1130/B31471.1

    Google Scholar 

  • Carosi R, D’addario E, Mammoliti E, Montomoli C, Simonetti M (2016b) Geological map of the northwestern portion of the Ferriere-Mollieres shear zone, Argentera Massif, Italy. J Maps 12:466–475

    Google Scholar 

  • Challandes N, Marquer D, Villa IM (2003) Dating the evolution of C-S microstructures: a combined 39Ar -40Ar step-heating and UV laserprobe analysis of the Alpine Roffna shear zone. Chem Geol 197(1–4):3–19

    Google Scholar 

  • Challandes N, Marquer D, Villa I (2008) P–T-tmodelling, fluid circulation, and 39Ar-40Ar and Rb–Sr mica ages in the Aar Massif shear zones (Swiss Alps). Swiss J Geosci 101(2):269–288

    Google Scholar 

  • Collombet M, Thomas JC,. Chauvin A, Tricart P, Bouillin JP, Gratier JP (2002) Counterclockwise rotation of the western Alps since the Oligocene: New insights from paleomagnetic data. Tectonics 21(4):1032. https://doi.org/10.1029/2001TC901016

    Google Scholar 

  • Compagnoni R, Ferrando S, Lombardo B, Radulesco N, Rubatto D (2010) Paleo-European crust of the Italian Western Alps: geological history of the Argentera Massif and comparison with Mont Blanc-Aiguilles Rouges and Maures-Tanneron Massifs. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) Journal of the virtual explorer, vol 36, pp 4. https://doi.org/10.3809/jvirtex.2009.00228

  • Corsini M, Rolland Y (2009) Late evolution of the southern European Variscan belt: exhumation of the lower crust in a context of oblique convergence. C R Geosci 341(2–3):214–223

    Google Scholar 

  • Corsini M, Ruffet G, Caby R (2004) Alpine and late Hercynian geochronological constraints in the Argentera Massif (Western Alps). Eclogae Geolog Helv 97:3–15

    Google Scholar 

  • Cottle JM, Searle MP, Jessup MJ, Crowley JL, Law RD (2015) Rongbuk Re-visited: geochronology of Leucogranites in the footwall of the South Tibetan Detachment System, Everest Region, Southern Tibet. Lithos 227:94–106

    Google Scholar 

  • Cruz MJ, Cunha JC, Merlet C, Sabatè P (1996) Datação pontual das monazitas da região de Itambé, Bahia, através da microssonda electronica XXXIX Congresso Brasileiro de Geologia, vol 2, Sociedade Brasileira de Geologià-Núcleo, Bahià-Segipe, pp 206–209

    Google Scholar 

  • d’Atri A, Piana F, Barale L, Bertok C, Martire L (2016) Geological setting of the southern termination of Western Alps. Int J Earth Sci (Geol Rundsch) 105:1831–1858. https://doi.org/10.1007/s00531-015-1277-9

    Google Scholar 

  • Di Vincenzo G, Carosi R, Palmeri R (2004) The relationship between tectono-metamorphic evolution and argon isotope records in white mica: constraints from in situ 40Ar–39Ar laser analysis of the Variscan basement of Sardinia. J Petrol 45(5):1013–1043

    Google Scholar 

  • Dias R, Ribeiro A (1995) The Ibero-Armorican Arc: a collision effect against an irregular continent?. Tectonophysics 246, 113–128

    Google Scholar 

  • Dias R, Ribeiro A, Romão J, Coke C, Moreira N (2016) A review of the arcuate structures in the Iberian Variscides; constraints and genetic models. Tectonophysics 681, 170–194

    Google Scholar 

  • Dunlap W, Teyssier C, McDougall I, Baldwin S (1991) Ages of deformation from K/Ar and 40Ar/39Ar dating of white micas. Geology 19:1213–1216

    Google Scholar 

  • Erickson TM, Pearce MA, Taylor RJM, Timms NE, Clark C, Reddy SM, Buick IS (2015) Deformed monazite yields high-temperature tectonic ages. Geology 43:383–386. https://doi.org/10.1130/G36533.1

    Google Scholar 

  • Faure M, Lardeaux JM, Ledru P (2009) A review of the pre-Permian geology of the Variscan French Massif Central. C R Geosci 341:202–213

    Google Scholar 

  • Faure-Muret A (1955) Etudes géologiques sur le massif de l’Argentera-Mercantour et ses enveloppes sédimentaires. Mémoires pour servir à l’explication de la Carte géologique détaillée de la France, Paris, Imprimerie Nationale, France, with «Esquisse Géologique du Massif de l’Argentera-Mercantour et de sa Bordure Sédimentaire (Versant français) » at the 1/100.000 scale., p. 336

  • Fernàndez-Lozano J, Pastor-Galàn D, Gutiérrez-Alonso G, Franco P (2016) New kinematic constraints on the Cantabrian orocline: a paleomagnetic study from the Peñalba and Truchas synclines. NW Spain Tectonophys 681, 195–208

    Google Scholar 

  • Ferrando S, Lombardo B, Compagnoni R (2008) Metamorphic history of HP mafic granulites from the Gesso-Stura Terrain (Argentera Massif, Western Alps, Italy). Eur J Mineral 20:777–790

    Google Scholar 

  • Ferrara G, Ricci CA, Rita F (1978) Isotopic ages and tectono-metamorphic history of the metamorphic basement of north-eastern Sardinia. Contrib Miner Petrol 68:99–106

    Google Scholar 

  • Festa V, Prosser G, Caggianelli A, Grande A, Langone A, Mele D (2016) Vorticity analysis of the Palmi shear zone mylonites: new insights for the Alpine tectonic evolution of the Calabria-Peloritani terrane (southern Italy). Geol J 51:670–681. https://doi.org/10.1002/gj.2673

    Google Scholar 

  • Fluck P, Piqué A, Schneider JL, Whitechurch H (1991) Le socle vosgien. Sci Géol 44:207–235

    Google Scholar 

  • Fossen H (2016) Structural geology. Cambridge University Press, Cambridge, pp 524

    Google Scholar 

  • Fossen H, Cavalcante GCG (2017) Shear zones—a review. Earth Sci Rev 171:434–455

    Google Scholar 

  • Fossen H, Tikoff B (1993) The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics. J Struct Geol 15:413–422. https://doi.org/10.1016/0191-8141(93)90137-Y

    Google Scholar 

  • Fossen H, Tikoff B, Teyssier C (1994) Strain modeling of transpressional and transtensional deformation. Norsk Geol Tidsskr 74:134–145

    Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. In: Dallmeyer RD (ed) Terranes in the circum-atlantic paleozoic orogens. Geological Society of America Special Papers. Geological Society of America, Boulder, vol 230, pp 67–90

    Google Scholar 

  • Franke W, Robin LMC, Torsvik TH (2017) The Palaeozoic Variscan Oceans Revisited. Gondwana Res 48:257–284. https://doi.org/10.1016/j.gr.2017.03.005

    Google Scholar 

  • Frassi C, Carosi R, Montomoli C, Law RD (2009) Kinematics and vorticity of flow associated with post-collisional oblique transpression in the Variscan Inner Zone of northern Sardinia (Italy). J Struct Geol 31:1458–1471. https://doi.org/10.1016/j.jsg.2009.10.001

    Google Scholar 

  • Fry N (1979) Random point distribution and strain measurement in rocks. Tectonophysics 60:89–105

    Google Scholar 

  • Garcia-Navarro E, Fernandez C (2004) Final stages of the Variscan orogeny at the southern Iberian massif: Lateral extrusion and rotation of continental blocks. Tectonics 23:tc6001. https://doi.org/10.1029/2004tc001646

    Google Scholar 

  • Gasquet D, Bertrand JM, Paquette JL, Lehmann J, Ratzoy G, De Ascencão Guedes R, Tiepolo M, Boullier AM, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine basement massif of the French western Alps: new U–Th–Pb and argon ages from the Lauzière massif. Bulletin de la Société Géologique de France 181: 227–241

    Google Scholar 

  • Genier F, Epard JL (2007) The fry method applied to an augen orthogneiss: problems and results. J Struct Geol 29:209–244

    Google Scholar 

  • Genier F, Bussy F, Epard JL, Baumgartner L (2008) Water-assisted migmatization of metagraywackes in a Variscan shear zone, Aiguilles-Rouges Massif, western Alps. Lithos 102:575–597

    Google Scholar 

  • Gibson HD, Carr SC, Brown RL, Hamilton MA (2004) Correlations between chemical and age domains in monazite, and metamorphic reactions involving major pelitic phases: an integration of ID-TIMS and SHRIMP geochronology with Y–Th–U X-ray mapping. Chem Geol 211:237–260

    Google Scholar 

  • Gillam BG, Little TA, Smith E, Toy VG (2013) Extensional shear band development on the outer margin of the Alpine mylonite zone, Tatare Stream, Southern Alps, New Zealand. J Struct Geol 54:1–20

    Google Scholar 

  • Goscombe BD, Grey DR (2009) Metamorphic response in orogens of different obliquity, scale and geometry. Gondwana Res 15(2):151–167

    Google Scholar 

  • Goscombe BD, Hand M, Gray D, Mawby J (2003) The metamorphic architecture of a transpressional orogen: the Kaoko Belt. Namibia J Pet 44:679–711

    Google Scholar 

  • Goscombe B, David G, Richard A, David AF, James V (2005) Event geochronology of the Pan-African Kaoko Belt, Namibia. Precambr Res 140:103.e1–103.e41

    Google Scholar 

  • Guillot S, Ménot RP (2009) Paleozoic evolution of the Extern Crystalline Massifs of the Western Alps. CR Geosci 341:253–265

    Google Scholar 

  • Guillot S, Di Pola S, Ménot RP, Ledru P, Spalla MI, Gosso G, Schwartz S (2009) Suture zone and importance of strike-slip faulting for Variscan geodynamic reconstructions of the External Crystalline Massifs of the Western Alps. Bulletin de la Société Géologique de France 180(6): 483–500

    Google Scholar 

  • Holcombe R (2009) RJH StrainCalculator 3.2. https://www.holcombe.net.au/software/straincalculator.html

  • Horstwood MSA, Foster GL, Parrish RR, Noble SR, Nowell GM (2003) Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MCICP-MS. J Anal At Spectrom 18:837–846

    Google Scholar 

  • Hudleston P (1999) Strain compatibility and shear zones: is there a problem? J Struct Geol 21:923–932

    Google Scholar 

  • Iaccarino S, Montomoli C, Carosi R, Massonne H-J, Langone A, Visonà D (2015) Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley (central Nepal): Investigation of late Eocene–early Oligocene melting processes. Lithos 231:103–121. https://doi.org/10.1016/j.lithos.2015.06.005

  • Iaccarino S, Montomoli C, Carosi R, Massonne H-J, Visonà D (2017) Geology and tectono-metamorphic evolution of the Himalayan metamorphic core: insights from the Mugu Karnali transect, Western Nepal (Central Himalaya). J Metamorph Geol 35(3):301–325

    Google Scholar 

  • Iacopini D, Carosi R, Montomoli C, Passchier CW (2008) Strain analysis of flow in the Northern Sardinian Varisican Belt: recognition of a partitioned oblique deformation event. Tectonophysics 221:345–359

    Google Scholar 

  • Iacopini D, Carosi R, Xypolias P (2010) Implications of complex eigenvalues in homogeneous flow: a three-dimensional kinematic analysis. J Struct Geol 32(1):93–106

    Google Scholar 

  • Iacopini D, Frassi C, Carosi R, Montomoli C (2011) Biases in three-dimensional vorticity analysis using porphyroclast system: limits and application to natural examples. vol 360. Geological Society, London, Special Publications, pp 301–318. https://doi.org/10.1144/SP360.17

  • Kohn MJ (2008) P-T-t data from Nepal support critical taper and repudiate large channel flow of the Greater Himalayan Sequence. Geol Soc Am Bull 120: 259–273

    Google Scholar 

  • Kohn MJ, Wielnad M, Parkinson CD, Upreti BN (2005) Five generations of monazite in Langtang gneisses: implication for chronology of the Himalayan metamorphic core. J Metamorph Geol 23:399–406

    Google Scholar 

  • Kurz GA, Northrup CJ (2008) Structural analysis of mylonitic fault rocks in the Cougar Creek Complex, OregoneIdaho using the porphyroclast hyperbolic distribution method, and potential use of SC’-type extensional shear bands as quantitative vorticity indicators. J Struct Geol 30:1005–1012

    Google Scholar 

  • Larson KP, Cottle MJ (2015) Initiation of crustal shortening in the Himalaya. Terra Nova 27:169–174

    Google Scholar 

  • Larson KP, Godin L (2009) Kinematics of the Greater Himalayan Sequence, Dhaulagiri Himal: implications for the structural framework of central Nepal. J Geol Soc 166:25–43

    Google Scholar 

  • Law RD, Searle MP, Simpson RL (2004) Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet. J Geol Soc Lond 161: 305–320

    Google Scholar 

  • Li P, Sun M, Rosenbaum G, Cai K, Chen M, He Y (2016) Transpressional deformation, strain partitioning and fold superimposition in the southern Chinese Altai, Central Asian Orogenic Belt (Article). J Struct Geol 87:64–80

    Google Scholar 

  • Ludwig KR (2003) Isoplot/Ex Version 3.0: a geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication, Berkeley, vol 4, pp 74

    Google Scholar 

  • Maffione M, Speranza F, Faccenna C, Cascella A, Vignaroli G, Sagnotti L (2008) A synchronous Alpine and Corsica-Sardinia rotation. J Geophys Res 113:B3. https://doi.org/10.1029/2007JB005214

    Google Scholar 

  • Malaroda R, Carraro F, Dal Piaz GV, Franceschetti B, Sturani C, Zanella E (1970) Carta geologica del Massiccio dell’Argentera alla scala 1:50.000 e note illustrative. Mem della Soc Geol Ital 9: 557–663

    Google Scholar 

  • Matte P (1986a) La Chaîne varisque parmi les chaînes paléozoïques péri-atlantiques, modèle d’évolution et position des grands blocs continentaux au Permo-Carbonifère. Bull Soc Geol France 8:4–24

    Google Scholar 

  • Matte P (1986b) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374

    Google Scholar 

  • Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra nova 13:122–128

    Google Scholar 

  • Matte P, Ribeiro A (1975) Forme et orientation de l’ellipsoïde de déformation dans la virgation hercynienne de Galice. Relations avec le plissement et hypothèses sur la genèse de l’arc ibéro-armoricain. CR Acad Sci Paris 280:2825–2828

    Google Scholar 

  • Monié P, Maluski H (1983) Données géochronologiques 39Ar/40Ar sur le socle ante Permien du massif de l’Argentera-Mercantour (Alpes-Maritimes, France). Bull Soc Géol France 7:247–257

    Google Scholar 

  • Montomoli C, Iaccarino S, Carosi R, Langone A, Visonà D (2013) Tectonometamorphic discontinuities within the Greater Himalayan Sequence in western Nepal (central Himalaya): insights on the exhumation of crystalline rocks. Tectonophysics 608:1349–1370

    Google Scholar 

  • Montomoli C, Carosi R, Iaccarino S (2015) Tectonometamorphic discontinuities in the Greater Himalayan Sequence: a local or a regional feature?. In: Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK, Robinson DM (eds), Tectonics of the Himalaya: Geological Society of London Special Publication. Geological Society of London Special Publication, London, vol 412, pp 25–41. https://doi.org/10.1144/SP412.3

  • Mulch A, Cosca MA (2004) Recrystallization or cooling ages: in situ UV-laser 40Ar/39Ar geochronology of muscovite in mylonitic rocks. J Geol Soc Lond 161(4):573–582

    Google Scholar 

  • Musumeci G, Colombo F (2002) Late Visean mylonitic granitoids in the Argentera Massif (Western Alps): age and kinematic constraints on the Ferrière-Mollières shear zone. C R de l’Académie des Sci Serie II 334:213–220

    Google Scholar 

  • Nabavi ST, Diaz-Azpiroz M, Talbot CJ (2016) Inclined transpression in the Neka Valley, eastern Alborz, Iran. Int J Earth Sci (Geol Rundsch). https://doi.org/10.1007/s00531-016-1388-y

    Google Scholar 

  • Oliot E, Melleton J, Schneider J, Corsini M, Gardien V, Rolland Y (2015) Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U–Th–Pb chemical dating of high-grade rocks. Bull de la Soc Géol de France 186:145–169. https://doi.org/10.2113/gssgfbull.186.2-3.145

    Google Scholar 

  • Padovano M, Elter FM, Pandeli E, Franceschelli M (2012) The East Variscan Shear Zone: new insights into its role in the Late Carboniferous collision in southern Europe. Int Geol Rev 54:957–970

    Google Scholar 

  • Padovano M, Dörr W, Elter FM, Gerdes A (2014) The East Variscan Shear Zone: geochronological constraints from the Capo Ferro area (NE Sardinia, Italy). Lithos 196–197:27–41

    Google Scholar 

  • Paquette JL, Tiepolo M (2007) High resolution (5 µm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)–ICPMS. Chem Geol 240:222–237

    Google Scholar 

  • Passchier CW (1987) Stable position of rigid objects in non-coaxial flow: a study in vorticity analysis. J Struct Geol 9(n° 5/6):679–690

    Google Scholar 

  • Passchier CW (1991) The classification of dilatant flow type. J Struct Geol 13:101–104

    Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin, pp 101

    Google Scholar 

  • Pereira MF, Arturo Apraiz A, Silva JB, Chichorro M (2008) Tectonothermal analysis of high-temperature mylonitization in the Coimbra–Córdoba shear zone (SW Iberian Massif, Ouguela tectonic unit, Portugal): evidence of intra-continental transcurrent transport during the amalgamation of Pangea. Tectonophysics 461:378–394

    Google Scholar 

  • Pereira MF, Silva JB, Drost K, Chichorro M, Apraiz A (2010) Relative timing of transcurrent displacements in northern Gondwana: new U–Pb laser ablation MS–ICP–MS zircon and monazite geochronology of gneisses and sheared granites from the Western Iberian Massif (Portugal). Gondwana Res 17(2–3):461–481

    Google Scholar 

  • Piazolo S, Passchier CW (2002) Experimental modelling of viscous inclusions in a circular high-strain ring: implication for the interpretation of shape fabrics and deformed enclaves. J Geophy Res 107(B10):2242. (ETG 11: 1–15)

    Google Scholar 

  • Pyle JM, Spear FS (1999) Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. Geol Mat Res 1:1–49

    Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, Mcdonough WF (2001) Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107

    Google Scholar 

  • Ramsay JG, Huber MI (1987) The techniques of modern structural geology, vol. 2. Folds and Fractures. Academic Press, London

  • Rollet N, Déverchère J, Beslier M-O, Guennoc P, Réhault J-P, Sosson M, Truffert C (2002) Back arc extension, tectonic inheritance, and volcanism in the Ligurian Sea, Western Mediterranean: Ligurian Sea Back Arc structure and evolution. Tectonics 21(3):6-1–6-23. https://doi.org/10.1029/2001TC900027

    Google Scholar 

  • Rosenbaum G, Lister GS, Duboz C (2002) Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. J Virtual Explorer 8. https://doi.org/10.3809/jvirtex.2002.00053

  • Rubatto D, Schaltegger U, Lombardo B, Colombo F, Compagnoni R (2001) Complex Paleozoic magmatic and metamorphic evolution in the Argentera Massif (Western Alps) resolved with U–Pb dating. Schweizerische Mineralogische und Petrographische Mitteilungen 81:213–228

    Google Scholar 

  • Sanchez G, Rolland Y, Schreiber D, Giannerini G, Corsini M, Lardeaux J-M (2010) The active fault system of SW Alps. J Geodyn 49:296–302

    Google Scholar 

  • Sanchez G, Rolland Y, Schneider J, Corsini M, Oliot E, Goncalves P, Verati C, Lardeaux JM, Marquer D (2011) Dating low-temperature deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour Massif (SW Alps). Lithos 125:521–536

    Google Scholar 

  • Sarkarinejad K, Azizi A (2008) Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. J Struct Geol 30:116–136

    Google Scholar 

  • Sarkarinejad K, Keshavarz S, Faghih A (2015) Kinematics of the Sirjan mylonite nappe, Zagros Orogenic Belt: insights from strain and vorticity analyses. J Geosci 60:189–202

    Google Scholar 

  • Scotese CR, McKerrow WS (1990) Revised world maps and introduction. In: McKerrow WS, Scotese CR (eds) Palaezoic Palaegeography and Bio-geography, vol 12. Geological Society, London, pp 1–21

  • Schneider J, Corsini M, Reverso-Peila A, Lardeaux JM (2014) Thermal and mechanical evolution of an orogenic wedge during Variscan collision: an example in the Maures-Tanneron massif (SE France). Geol Soc Lond Spec Publ 405:313–331

    Google Scholar 

  • Seydoux-Guillaume AM, Paquette JL, Wiedenbeck M, Montel JM, Heinrich W (2002a) Experimental resetting of the U–Th–Pb system in monazite. Chem Geol 191:165–181

    Google Scholar 

  • Seydoux-Guillaume AM, Wirth R, Nasdala L, Gottschalk M, Montel JM, Heinrich W, 2002b, XRD, TEM and Raman study of experimental annealing of natural monazite. Phys Chem Miner 29: 240–253

  • Simonetti M, Carosi R, Montomoli C (2017) Variscan shear deformation in the Argentera Massif: a field guide to the excursion in the Pontebernardo Valley (CN, Italy). Atti della Società Toscana di Scienze Naturali Memorie, Serie A 124:151–169. https://doi.org/10.2424/ASTSN.M.2017.02

    Google Scholar 

  • Skrzypek E, Stìpskà P, Cocherie A (2012) The origin of zircon and the significance of U–Pb ages in high-grade metamorphic rocks: a case study from the Variscan orogenic root (Vosges Mountains, NE France). Contrib Miner Petrol 164:935–957

    Google Scholar 

  • Stampfli GM, von Raumer LF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. Geol S Am S 364:263–280

    Google Scholar 

  • Stipp M, Stunitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. J Struct Geol 24:1864–1884

    Google Scholar 

  • Tapponnier P, Molnar PJ (1977) Active faulting and tectonics in China. J Geophys Res 82:2905–2930

    Google Scholar 

  • Tapponnier P, Peltzer G, Le Dain AY, Armijo R, Cobbold P (1982) Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10:611–616

    Google Scholar 

  • Thomas JC, Claudel ME, Collombet M, Tricart P, Chauvin A, Dumont T (1999) First paleomagnetic data from the sedimentary cover of the French penninic Alps: Evidence for Tertiary counterclockwise rotations in the western Alps. Earth Planet Sci Lett 171:561–574

    Google Scholar 

  • Tiepolo M (2003) In situ Pb geochronology of zircon with laser ablation–inductively coupled plasma-sector field mass spectrometry. Chem Geol 199:159–177

    Google Scholar 

  • Todesco M, Vigliotti L (1993) When did Sardinia rotate? Statistical evalutation of the paleomagnetic data. Ann di Geofisica 30(5–6):119–134

    Google Scholar 

  • Tollmann A (1982) Großraumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. Geotekton Forsch 64:1–91

    Google Scholar 

  • Turco E, Macchiavelli C, Mazzoli S, Schettino A, Pierantoni PP (2012) Kinematic evolution of Alpine Corsica in the framework of Mediterranean mountain belts. Tectonophysics 579:193–206

    Google Scholar 

  • Van Actherbergh E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for LA–ICP–MS. In: Sylvester P (ed), Laser ablation ICPMS in the earth sciences. Short Course Series. Mineralogical Association of Canada, Quebec, vol 29, pp 239–243

    Google Scholar 

  • Vigliotti L, Kent DV (1990) Paleomagnetic results of Tertiary sediments from Corsica: evidence of post-Eocene rotation. Phys Earth Planet Inter 62:97–108

    Google Scholar 

  • Villa IM (2015) 39AR-40AR geochronology of mono- and polymetamorphic basement rocks. Periodico di Mineralogia 84(3B):615–632

    Google Scholar 

  • Villa IM, Ruggieri G, Puxeddu M (1997) Petrological and geochronological discrimination of two white-mica generations in a granite cored from the Larderello-Travale geothermal field (Italy). Eur J Mineral 9:563–568

    Google Scholar 

  • Villa IM, Bucher S, Bousquet R, Kleinhanns TC, Schmid SM (2014) Dating polygenic metamorphic assemblages along a transect across the the western Alps. J Petrol 55(4):803–830

    Google Scholar 

  • Vollmer FW (2015) EllipseFit 3.2. https://www.frederickvollmer.com/ellipsefit/

  • von Raumer JF, Bussy F, Schaltegger U, Schulz B, Stampfli GM (2013) Pre-Mesozoic Alpine basements—Their place in the European Paleozoic framework. Geol Soc Am Bull 125(1–2):89–108. https://doi.org/10.1130/B30654.1

    Google Scholar 

  • Wallis SR, Platt JP, Knott SD (1993) Recognition of syn-convergence extension in accretionary wedges with examples from Calabrian arc and the Eastern Alps. Am J Sci 293:463–495

    Google Scholar 

  • Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175

    Google Scholar 

  • Wu W, Liu J, Zhang L, Qi Y, Ling C (2016) Characterizing a middle to upper crustal shear zone: microstructures, quartz c-axis fabrics, deformation temperatures and flow vorticity analysis of the northern Ailao Shan-Red River shear zone. J Asian Earth Sci

  • Xypolias P (2010) Vorticity analysis in shear zones: a review of methods and applications. J Struct Geol 32:2072–2092

    Google Scholar 

  • Xypolias P, Kokkalas S (2006) Heterogeneous ductile deformation along a midcrustal extruding shear zone: an example from the External Hellenides (Greece). In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion, and exhumation in continental collision zones, Special Publications. Geological Society, London, vol 268, pp 497–516

    Google Scholar 

  • Zhang Q, Teyssier C (2013) Flow vorticity in Zhangbaling transpressional attachment zone, SE China. J Struct Geol 48:72–84

    Google Scholar 

Download references

Acknowledgements

Research supported by funds from Torino University (Ricerca Locale 2014, 2015), Pisa University (PRA 2016) and PRIN 2016 (Prot. 2015EC9PJ5_004; resp. R Carosi and C. Montomoli). We thank Michel Corsini and an anonymous reviewer for their careful revision that significantly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Simonetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

. Chemical quantitative analyses of the monazites of the sample ARG 19, ARG 21, ARG 27, ARG 29 and ARG 48b. (XLSX 104 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonetti, M., Carosi, R., Montomoli, C. et al. Kinematic and geochronological constraints on shear deformation in the Ferriere-Mollières shear zone (Argentera-Mercantour Massif, Western Alps): implications for the evolution of the Southern European Variscan Belt. Int J Earth Sci (Geol Rundsch) 107, 2163–2189 (2018). https://doi.org/10.1007/s00531-018-1593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-018-1593-y

Keywords

Navigation