Skip to main content

Convolutional Bayesian Models for Anatomical Landmarking on Multi-dimensional Shapes

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12264))

Abstract

The anatomical landmarking on statistical shape models is widely used in structural and morphometric analyses. The current study focuses on leveraging geometric features to realize an automatic and reliable landmarking. The existing implementations usually rely on classical geometric features and data-driven learning methods. However, such designs often have limitations to specific shape types. Additionally, calculating the features as a standalone step increases the computational cost. In this paper, we propose a convolutional Bayesian model for anatomical landmarking on multi-dimensional shapes. The main idea is to embed the convolutional filtering in a stationary kernel so that the geometric features are efficiently captured and implicitly encoded into the prior knowledge of a Gaussian process. In this way, the posterior inference is geometrically meaningful without entangling with extra features. By using a Gaussian process regression framework and the active learning strategy, our method is flexible and efficient in extracting arbitrary numbers of landmarks. We demonstrate extensive applications on various publicly available datasets, including one brain imaging cohort and three skeletal anatomy datasets. Both the visual and numerical evaluations verify the effectiveness of our method in extracting significant landmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Aifari, R., Daubechies, I., Lipman, Y.: Continuous procrustes distance between two surfaces. Commun. Pure Appl. Math. 66(6), 934–964 (2013)

    Article  MathSciNet  Google Scholar 

  2. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633. IEEE (2011)

    Google Scholar 

  3. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  4. Bonaretti, S., Seiler, C., Boichon, C., Reyes, M., Büchler, P.: Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations. Medical Eng. Phys. 36(12), 1626–1635 (2014)

    Article  Google Scholar 

  5. Boyer, D.M., Lipman, Y., Clair, E.S., Puente, J., Patel, B.A., Funkhouser, T., Jernvall, J., Daubechies, I.: Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proc. Natl. Acad. Sci. 108(45), 18221–18226 (2011)

    Article  Google Scholar 

  6. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  7. Couette, S., White, J.: 3D geometric morphometrics and missing-data. can extant taxa give clues for the analysis of fossil primates? C.R. Palevol 9(6–7), 423–433 (2010)

    Article  Google Scholar 

  8. Fan, Y., Lepore, N., Wang, Y.: Morphometric gaussian process for landmarking on grey matter tetrahedral models. In: 15th International Symposium on Medical Information Processing and Analysis, vol. 11330, p. 113300H. International Society for Optics and Photonics (2020)

    Google Scholar 

  9. Fan, Y., Wang, G., Leporé, N., Wang, Y.: A tetrahedron-based heat flux signature for cortical thickness morphometry analysis. Med. Image Comput. Comput. Assist. Interv. 11072, 420–428 (2018)

    Google Scholar 

  10. Gao, T., Kovalsky, S.Z., Boyer, D.M., Daubechies, I.: Gaussian process landmarking for three-dimensional geometric morphometrics. SIAM J. Math. Data Sci. 1(1), 237–267 (2019)

    Article  MathSciNet  Google Scholar 

  11. Gardner, J., Pleiss, G., Weinberger, K.Q., Bindel, D., Wilson, A.G.: Gpytorch: blackbox matrix-matrix gaussian process inference with GPU acceleration. In: Advances in Neural Information Processing Systems, pp. 7576–7586 (2018)

    Google Scholar 

  12. Guennebaud, G., Germann, M., Gross, M.: Dynamic sampling and rendering of algebraic point set surfaces. In: Computer Graphics Forum, vol. 27, pp. 653–662. Wiley Online Library (2008)

    Google Scholar 

  13. Huang, S.G., Lyu, I., Qiu, A., Chung, M.K.: Fast polynomial approximation of heat kernel convolution on manifolds and its application to brain sulcal and gyral graph pattern analysis. IEEE Trans. Med. Imaging 39(6), 2201–2212 (2020)

    Article  Google Scholar 

  14. Jack Jr., C.R., et al.: The alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Mag. Resonance Imaging Off. J. Int. Soc. Magnet. Resonance Med. 27(4), 685–691 (2008)

    Google Scholar 

  15. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: Proceedings of the 19th International Conference on Machine Learning, vol. 2002, pp. 315–322 (2002)

    Google Scholar 

  16. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. graphics (TOG) 24(3), 659–666 (2005)

    Article  Google Scholar 

  17. Lipman, Y.: Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graphics (TOG) 31(4), 1–13 (2012)

    Article  Google Scholar 

  18. Mueller, S.G., et al.: The alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. 15(4), 869–877 (2005)

    Article  Google Scholar 

  19. Øksendal, B.: Stochastic Differential Equations. U. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-14394-6

    Book  MATH  Google Scholar 

  20. Pini, L., et al.: Brain atrophy in alzheimer’s disease and aging. Ageing Res. Rev. 30, 25–48 (2016)

    Article  Google Scholar 

  21. Salhi, A., Burdin, V., Brochard, S., Mutsvangwa, T.E., Borotikar, B.: Clinical relevance of augmented statistical shape model of the scapula in the glenoid region. Med. Eng. Phys. 76, 88–94 (2020)

    Article  Google Scholar 

  22. Särkkä, S.: Linear operators and stochastic partial differential equations in gaussian process regression. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6792, pp. 151–158. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21738-8_20

    Chapter  Google Scholar 

  23. Seim, H., Kainmueller, D., Heller, M., Zachow, S., Hege, H.C.: Automatic extraction of anatomical landmarks from medical image data: an evaluation of different methods. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 538–541. IEEE (2009)

    Google Scholar 

  24. Si, H.: Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. (TOMS) 41(2), 1–36 (2015)

    Article  MathSciNet  Google Scholar 

  25. Stein, M.L.: A kernel approximation to the kriging predictor of a spatial process. Ann. Inst. Stat. Math. 43(1), 61–75 (1991)

    Article  MathSciNet  Google Scholar 

  26. Wang, G., Wang, Y., Initiative, A.D.N., et al.: Towards a holistic cortical thickness descriptor: heat kernel-based grey matter morphology signatures. Neuroimage 147, 360–380 (2017)

    Article  Google Scholar 

  27. Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning, vol. 2. MIT press, Cambridge (2006)

    MATH  Google Scholar 

  28. Wilson, A., Adams, R.: Gaussian process kernels for pattern discovery and extrapolation. In: International Conference on Machine Learning, pp. 1067–1075 (2013)

    Google Scholar 

  29. Wilson, A.G.: Covariance kernels for fast automatic pattern discovery and extrapolation with Gaussian processes. Ph.D. thesis, University of Cambridge (2014)

    Google Scholar 

  30. Wu, Z., et al.: Intrinsic patch-based cortical anatomical parcellation using graph convolutional neural network on surface manifold. Med Image Comput Comput Assist Interv 11766, 492–500 (2019)

    Google Scholar 

  31. Xie, W., et al.: Statistical model-based segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs. Int. J. Comput. Assist. Radiol. Surg. 9(2), 165–176 (2014)

    Article  Google Scholar 

  32. Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans. Image Process. 26(10), 4753–4764 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zheng, G., Gollmer, S., Schumann, S., Dong, X., Feilkas, T., Gonzülez Ballester, M.A.: A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images. Med. Image Anal. 13(6), 883–899 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NIH (RF1AG051710 and R01EB025032) and Arizona Alzheimer Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, Y., Wang, Y. (2020). Convolutional Bayesian Models for Anatomical Landmarking on Multi-dimensional Shapes. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics