Skip to main content

Image2SSM: Reimagining Statistical Shape Models from Images with Radial Basis Functions

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

Abstract

Statistical shape modeling (SSM) is an essential tool for analyzing variations in anatomical morphology. In a typical SSM pipeline, 3D anatomical images, gone through segmentation and rigid registration, are represented using lower-dimensional shape features, on which statistical analysis can be performed. Various methods for constructing compact shape representations have been proposed, but they involve laborious and costly steps. We propose Image2SSM, a novel deep-learning-based approach for SSM that leverages image-segmentation pairs to learn a radial-basis-function (RBF)-based representation of shapes directly from images. This RBF-based shape representation offers a rich self-supervised signal for the network to estimate a continuous, yet compact representation of the underlying surface that can adapt to complex geometries in a data-driven manner. Image2SSM can characterize populations of biological structures of interest by constructing statistical landmark-based shape models of ensembles of anatomical shapes while requiring minimal parameter tuning and no user assistance. Once trained, Image2SSM can be used to infer low-dimensional shape representations from new unsegmented images, paving the way toward scalable approaches for SSM, especially when dealing with large cohorts. Experiments on synthetic and real datasets show the efficacy of the proposed method compared to the state-of-art correspondence-based method for SSM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J., Bhalodia, R., Elhabian, S.: Uncertain-DeepSSM: from images to probabilistic shape models. In: Shape in Medical Imaging: International Workshop, ShapeMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings 12474, pp. 57–72 (2020)

    Google Scholar 

  2. Adams, J., Elhabian, S.: From images to probabilistic anatomical shapes: a deep variational bottleneck approach. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II, pp. 474–484. Springer (2022). https://doi.org/10.1007/978-3-031-16434-7_46

  3. Atkins, P.R., et al.: Quantitative comparison of cortical bone thickness using correspondence-based shape modeling in patients with cam femoroacetabular impingement. J. Orthop. Res. 35(8), 1743–1753 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bhalodia, R., Dvoracek, L.A., Ayyash, A.M., Kavan, L., Whitaker, R., Goldstein, J.A.: Quantifying the severity of metopic craniosynostosis: a pilot study application of machine learning in craniofacial surgery. J. Craniofacial Surg. (2020)

    Google Scholar 

  5. Bhalodia, R., Elhabian, S., Adams, J., Tao, W., Kavan, L., Whitaker, R.: DeepSSM: a blueprint for image-to-shape deep learning models (2021)

    Google Scholar 

  6. Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23

    Chapter  Google Scholar 

  7. Bruse, J.L., et al.: A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta. BMC Med. Imaging 16, 1–19 (2016)

    Article  Google Scholar 

  8. Carr, J.C., et al.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 67–76. SIGGRAPH ’01, Association for Computing Machinery, New York, NY, USA (2001). https://doi.org/10.1145/383259.383266

  9. Carriere, N., et al.: Apathy in Parkinson’s disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis. Mov. Disord. 29(7), 897–903 (2014)

    Article  Google Scholar 

  10. Cates, J., et al.: Computational shape models characterize shape change of the left atrium in atrial fibrillation. Clin. Med. Insights: Cardiol. 8, CMC-S15710 (2014)

    Google Scholar 

  11. Cates, J., Elhabian, S., Whitaker, R.: ShapeWorks: particle-based shape correspondence and visualization software. In: Statistical Shape and Deformation Analysis, pp. 257–298. Elsevier (2017)

    Google Scholar 

  12. Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_28

    Chapter  Google Scholar 

  13. Davies, R.H.: Learning shape: optimal models for analysing natural variability (2004)

    Google Scholar 

  14. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)

    Article  MATH  Google Scholar 

  15. Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. Neuroimage 101, 35–49 (2014)

    Article  Google Scholar 

  16. Harris, M.D., Datar, M., Whitaker, R.T., Jurrus, E.R., Peters, C.L., Anderson, A.E.: Statistical shape modeling of cam femoroacetabular impingement. J. Orthop. Res. 31(10), 1620–1626 (2013). https://doi.org/10.1002/jor.22389

    Article  Google Scholar 

  17. Kempfert, K.C., Wang, Y., Chen, C., Wong, S.W.: A comparison study on nonlinear dimension reduction methods with kernel variations: visualization, optimization and classification. Intell. Data Anal. 24(2), 267–290 (2020)

    Article  Google Scholar 

  18. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)

    Google Scholar 

  19. Lenz, A., et al.: Statistical shape modeling of the talocrural joint using a hybrid multi-articulation joint approach. Sci. Rep. 11, 7314 (2021). https://doi.org/10.1038/s41598-021-86567-7

    Article  Google Scholar 

  20. Merle, C., et al.: How many different types of femora are there in primary hip osteoarthritis? an active shape modeling study. J. Orthop. Res. 32(3), 413–422 (2014)

    Article  Google Scholar 

  21. Merle, C., et al.: High variability of acetabular offset in primary hip osteoarthritis influences acetabular reaming-a computed tomography-based anatomic study. J. Arthroplasty 34(8), 1808–1814 (2019)

    Article  Google Scholar 

  22. Sarkalkan, N., Weinans, H., Zadpoor, A.A.: Statistical shape and appearance models of bones. Bone 60, 129–140 (2014)

    Article  Google Scholar 

  23. Thompson, D.W., et al.: On growth and form (1942)

    Google Scholar 

  24. Tóthová, K., et al.: Probabilistic 3D surface reconstruction from sparse MRI information. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 813–823. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_79

    Chapter  Google Scholar 

  25. Tóthová, K., et al.: Uncertainty quantification in CNN-based surface prediction using shape priors. CoRR abs/1807.11272 (2018). http://arxiv.org/abs/1807.11272

  26. Turk, G., O’Brien, J.F.: Variational implicit surfaces (1999)

    Google Scholar 

  27. van Buuren, M., et al.: Statistical shape modeling of the hip and the association with hip osteoarthritis: a systematic review. Osteoarthritis Cartilage 29(5), 607–618 (2021). https://doi.org/10.1016/j.joca.2020.12.003, https://www.sciencedirect.com/science/article/pii/S106345842031219X

  28. Zachow, S.: Computational planning in facial surgery. Facial Plast. Surg. 31(05), 446–462 (2015)

    Article  Google Scholar 

  29. Zadpoor, A.A., Weinans, H.: Patient-specific bone modeling and analysis: the role of integration and automation in clinical adoption. J. Biomech. 48(5), 750–760 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

The National Institutes of Health supported this work under grant numbers NIBIB-U24EB029011. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 570 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, H., Elhabian, S.Y. (2023). Image2SSM: Reimagining Statistical Shape Models from Images with Radial Basis Functions. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics