Skip to main content

Continuous Formal Verification of Microservice-Based Process Flows

  • Conference paper
  • First Online:
Software Architecture (ECSA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1269))

Included in the following conference series:

Abstract

The microservice architectural style is often used to implement modern cloud, IoT, and large-scale distributed applications. Here software development processes are characterized by short incremental iterations, where several updates and new functionalities are continuously integrated many times a day in a agile fashion. Such a paradigm shift calls for new formal approaches to systematic (design-time and runtime) verification. This paper introduces a formal framework to apply continuous verification of microservice based applications built on top of Conductor, i.e., an open source orchestration engine of microservices workflows in use at Netflix, Inc. for their production environment. Our proposal adopts a model-driven paradigm and it leverages solid foundation from Petri nets to specify and verify the behavior of time-dependent workflows. This paper describes our approach, the current implementation, and evaluation activity conducted on a taxi-hailing application example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    They are comparable to those of service-oriented computing  [13] and we can find their roots in the design principles of Unix  [15].

  2. 2.

    The main components of the toolchain are available as open source software at https://github.com/SELab-unimi/conductor2pn and https://maharajaframework.bitbucket.io/.

References

  1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 414–425, June 1990. https://doi.org/10.1109/LICS.1990.113766

  2. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools, pp. 87–124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3

    Book  MATH  Google Scholar 

  3. Camilli, M., Bellettini, C., Capra, L., Monga, M.: CTL model checking in the cloud using MapReduce. In: 2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 333–340, September 2014. https://doi.org/10.1109/SYNASC.2014.52

  4. Camilli, M., Gargantini, A., Scandurra, P.: Specifying and verifying real-time self-adaptive systems. In: 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE), pp. 303–313, November 2015. https://doi.org/10.1109/ISSRE.2015.7381823

  5. Camilli, M.: Petri nets state space analysis in the cloud. In: Proceedings of the 34th International Conference on Software Engineering, ICSE 2012, pp. 1638–1640. IEEE Press, Piscataway (2012)

    Google Scholar 

  6. Camilli, M., Bellettini, C., Capra, L., Monga, M.: A formal framework for specifying and verifying microservices based process flows. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 187–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_14

    Chapter  Google Scholar 

  7. Camilli, M., Gargantini, A., Scandurra, P.: Zone-based formal specification and timing analysis of real-time self-adaptive systems. Sci. Comput. Program. 159, 28–57 (2018). https://doi.org/10.1016/j.scico.2018.03.002

    Article  Google Scholar 

  8. Camilli, M., Gargantini, A., Scandurra, P., Bellettini, C.: Event-based runtime verification of temporal properties using time basic Petri nets. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 115–130. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_8

    Chapter  Google Scholar 

  9. Colombo, Christian., Pace, Gordon J., Schneider, Gerardo: Dynamic event-based runtime monitoring of real-time and contextual properties. In: Cofer, Darren, Fantechi, Alessandro (eds.) FMICS 2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03240-0_13

    Chapter  Google Scholar 

  10. Conductor, N.: Conductor documentation (2019). https://netflix.github.io/conductor/. Accessed Sept 2019

  11. Dragoni, N., et al.: Microservices: Yesterday, Today, and Tomorrow, pp. 195–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67425-4_1210.1007/978-3-319-67425-4_12

    Book  Google Scholar 

  12. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: Devops. IEEE Softw. 33(3), 94–100 (2016). https://doi.org/10.1109/MS.2016.68

    Article  Google Scholar 

  13. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR, Upper Saddle River (2005)

    Google Scholar 

  14. Fokkink, W.: Introduction to Process Algebra, 1st edn. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04293-9

    Book  MATH  Google Scholar 

  15. Fowler, M.: Microservices: a definition of this new architectural term (2019). https://martinfowler.com/articles/microservices.html. Accessed Sept 2019

  16. Ghezzi, C., Mandrioli, D., Morasca, S., Pezzè, M.: A unified high-level Petri net formalism for time-critical systems. IEEE Trans. Softw. Eng. 17, 160–172 (1991). https://doi.org/10.1109/32.67597

    Article  Google Scholar 

  17. Ghezzi, C.: Formal Methods and Agile Development: Towards a Happy Marriage, pp. 25–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73897-0_2

    Book  Google Scholar 

  18. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms. ACM Trans. Comput. Logic 1(1), 77–111 (2000). https://doi.org/10.1145/343369.343384

    Article  MathSciNet  MATH  Google Scholar 

  19. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri Nets, pp. 220–235. Springer, Heidelberg (2005). https://doi.org/10.1007/11538394_15

    Book  Google Scholar 

  20. Iglesia, D.G.D.L., Weyns, D.: Mape-k formal templates to rigorously design behaviors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 10(3), 151–1531 (2015). https://doi.org/10.1145/2724719

    Article  Google Scholar 

  21. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47884-1_16

    Chapter  Google Scholar 

  22. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time assurance approach for Java programs. Form. Methods Syst. Des. 24(2), 129–155 (2004). https://doi.org/10.1023/B:FORM.0000017719.43755.7c

    Article  MATH  Google Scholar 

  23. Lee, W.J., Cha, S.D., Kwon, Y.R.: Integration and analysis of use cases using modular Petri nets in requirements engineering. IEEE Trans. Softw. Eng. 24(12), 1115–1130 (1998)

    Article  Google Scholar 

  24. Merkel, D.: Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014(239) (2014). http://dl.acm.org/citation.cfm?id=2600239.2600241

  25. Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: JOLIE: a Java orchestration language interpreter engine. Electr. Notes Theor. Comput. Sci. 181, 19–33 (2007). https://doi.org/10.1016/j.entcs.2007.01.051

    Article  Google Scholar 

  26. Netflix, I.: The Netflix Service (2019). https://www.netflix.com/. Accessed Sept 2019

  27. Vergara, S., González, L., Ruggia, R.: Towards formalizing microservices architectural patterns with Event-B. In: 2020 IEEE International Conference on Software Architecture Companion (ICSA-C), pp. 71–74 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Camilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camilli, M. (2020). Continuous Formal Verification of Microservice-Based Process Flows. In: Muccini, H., et al. Software Architecture. ECSA 2020. Communications in Computer and Information Science, vol 1269. Springer, Cham. https://doi.org/10.1007/978-3-030-59155-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59155-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59154-0

  • Online ISBN: 978-3-030-59155-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics