Skip to main content

Element Case Studies: Manganese

  • Chapter
  • First Online:
Agromining: Farming for Metals

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

Manganese, one of the important trace elements with different concentrations in living tissues, is also widely used in the metals industry. As an essential micronutrient for plants, taken up under the +2-oxidation state, it is crucial in reactions of some enzymes (malic dehydrogenase, oxalosuccinate decarboxylase, superoxide dismutase), and is an activator of those enzymes involved in the tricarboxylic acid cycle. In soils, Mn is commonly in the form of +4 and +3 valence-state oxides, which may be reduced to the +2 form in some ways, such as by acidifying the soil solution, under waterlogged soil conditions, by heating and drying, and by the activity of anaerobic and aerobic micro-organisms. Manganese can be taken up in high concentrations by plants growing in base-rich soils. Manganese hyperaccumulator plants have been defined by a threshold foliar concentration of over 10 000 µg g−1 dry weight (DW). Manganese toxicity in plants can cause stunting, chlorosis, curled leaves, or brown lesions, as well as inhibiting photosynthesis and respiration. Several elements such as P and Ca are reported to have important impacts on the uptake and accumulation of Mn by plants. Manganese may be stored in vacuoles, cell walls, the Golgi apparatus, and chloroplast lamellae, and can form black agglomerations in plant cells. In this review, Mn hyperaccumulator biomass disposal and ecological restoration of Mn tailings wastelands are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Yunus M (2011) Can we use biomass produced from phytoremediation? Biomass Bioenerg 35:1371–1372

    Article  CAS  Google Scholar 

  • Alam S, Kodam R, Akiha F, Kamei S, Kawai S (2006) Alleviation of manganese phytotoxicity in barley with calcium. J Plant Nutr 29:59–74

    Article  CAS  Google Scholar 

  • Archer MJG, Caldwell RA (2004) Response of six Australian plant species to heavy metal contamination at an abandoned mine site. Water Air Soil Poll 157:257–267

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press Inc, Boca Raton, pp 85–107

    Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17:117–127

    Article  CAS  Google Scholar 

  • Baker AJM (1995) Heavy metals in soil. Blackie Academic & Professional, London 2nd edn, ISBN 0-7514-0198-6. pp 368

    Google Scholar 

  • Bidwell SD, Woodrow IE, Batianoff GN, Sommerknudsen J (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct Plant Biol 29:899–905

    Article  CAS  Google Scholar 

  • Bidwell SD, Crawford SA, Sommer-Knudsen J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F, Muell. Plant Cell Environ 27:705–716

    Article  CAS  Google Scholar 

  • Boominathan R, Chaudhury SNM, Sahajwalla V, Doran PM (2004) Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnol Bioenerg 86:243–250

    Article  CAS  Google Scholar 

  • Boudissa SM, Lambert J, Müller C, Kennedy G, Gareau L, Zayed I (2006) Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant. Sci Total Environ 361:67–72

    Article  CAS  Google Scholar 

  • Brooks RR (1997) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 88–105

    Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  • Chalot M, Blaudez D, Rogaume Y, Provent AS, Pascual C (2012) Fate of trace elements during the combustion of phytoremediation wood. Environ Sci Technol 46:13361–13369

    Article  CAS  Google Scholar 

  • Demirevska-Kepova K, Feller U (2004) Heat sensitivity of Rubisco, Rubisco activase and Rubisco binding protein in higher plants. Acta Physiol Plant 26(1):103–114

    Google Scholar 

  • Devi L, Ptasinski KJ, Janssen FJJ (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenerg 24:125–140

    Article  CAS  Google Scholar 

  • Doncheva S, Georgieva K, VassilevaV Stoyanova Z, Popov N, lgnatov G (2005) Effects of succinate on manganese toxicity in pea plants. J Plant Nutr 28:47–62

    Article  CAS  Google Scholar 

  • Dou C, Fu X, Chen X, Shi J, Chen Y (2009) Accumulation and interaction of calcium and manganese in Phytolacca americana. Plant Sci 177:601–606

    Article  CAS  Google Scholar 

  • Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Brazil J Plant Physiol 17:103–112

    Article  CAS  Google Scholar 

  • Dučić T, Thieme J, Polle A (2012) Phosphorus compartmentalization on the cellular level of Douglas fir root as affected by Mn toxicity: a synchrotron-based FTIR approach. Spectroscopy 27(5–6):265–272

    Article  CAS  Google Scholar 

  • Esteban E, Deza MJ, Zornoza P (2013) Kinetics of mercury uptake by oil seed rape and white lupin: influence of Mn and Cu. Acta Physiol Plant 35(35):2339–2344

    Article  CAS  Google Scholar 

  • Farias CP, Alves GS, Oliveira DC, de Melo EI, Azevedo LCB (2020) A consortium of fungal isolates and biochar improved the phytoremediation potential of Jacaranda mimosifolia D. Don and reduced copper, manganese, and zinc leaching. J Soils Sediments 20(1):260–271

    Google Scholar 

  • Fecht-Christoffers MM, Horst WJ (2006) The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiol 140:1451–1463

    Article  CAS  Google Scholar 

  • Fernando DR, Bakkaus EJ, Perrier N, Baker AJM, Woodrow IE, Batianoff GN, Collins RN (2006a) Manganese accumulation in the leaf mesophyll of four tree species: a PIXE/EDAX localization study. New Phytol 171:751–758

    Article  CAS  Google Scholar 

  • Fernando DR, Batianoff GN, Baker AJM, Woodrow IE (2006b) In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX. Plant Cell Environ 29:1012–1020

    Article  CAS  Google Scholar 

  • Fernando DR, Batianoff GN (2007) Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293:145–152

    Article  CAS  Google Scholar 

  • Fernando DR, Woodrow IE, Jaffré T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus fournieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185

    Article  CAS  Google Scholar 

  • Fernando DR, Baker AJM, Woodrow IE (2009) Physiological responses in Macadamia integrifolia on exposure to manganese treatment. Aust J Bot 57:406–413

    Article  CAS  Google Scholar 

  • Fernando DR, Woodrow IE, Baker AJM, Marshall AT (2012) Plant homeostasis of foliar manganese sinks: specific variation in hyperaccumulators. Planta 236:1459–1470

    Article  CAS  Google Scholar 

  • Fernando DR, Marshall AT, Forster PI, Hoebee SE, Siegele R (2013) Multiple metal accumulation within a manganese-specific genus. Amer J Bot 100(4):690–700

    Article  CAS  Google Scholar 

  • Fernando DR, Lynch JP (2015) Manganese phytotoxicity: new light on an old problem. Ann Bot London 116:313–319

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A Review on phytoremediation of heavy metals and utilization of it’s by products. As J Energy Env 6:214–231

    Google Scholar 

  • González A, Lynch J (1999) Tolerance of tropical common bean genotypes to manganese toxicity: Performance under different growing conditions. J Plant Nutr 22:511–525

    Article  Google Scholar 

  • González A, Steffen K, Lynch JP (1998) Light and excess manganese. Plant Physiol 118:493–504

    Article  Google Scholar 

  • González RC, González-Chávez MC (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144:84–92

    Article  CAS  Google Scholar 

  • Graham RD, Hannam RJ, Uren NC (1988) Manganese in soils and plants: proceedings of the international symposium on ‘Manganese in Soils and Plants’ held at the Waite Agricultural Research Institute, the University of Adelaide, Glen Osmond, South Australia. Springer Netherlands, 344 p, 22–26 Aug 1988

    Google Scholar 

  • Hauck M, Paul A, Gross S, Raubuch M (2003) Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environ Exp Bot 49:181–191

    Article  CAS  Google Scholar 

  • Herndon EM (2012) Biogeochemistry of manganese contamination in a temperate forested watershed. PhD thesis, Chapter 4 pp 65–80

    Google Scholar 

  • Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plants VII. Effect of light-intensity on manganese-induced chlorosis. J Plant Nutr 11:235–246

    Article  CAS  Google Scholar 

  • Horst WJ, Marschner H (1978) Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L). Plant Soil 50:287–303

    Article  CAS  Google Scholar 

  • Hua D, Ming-Shun L, Xu CY (2009) Accumulating characteristics of manganese by Polygonum pubescens Blume. Acta Ecol Sin 5450–5454

    Google Scholar 

  • Itouga M, Honma Y, Nakatsuka S, Komatsu Y, Kawakami S, Sakakibara H (2010) Aqueous environment conservation and metal-resource recycling technology using the moss Funaria hygrometrica. Regul Plant Growth Dev 45:64–72 (in Japanese with English abstract)

    CAS  Google Scholar 

  • Jaffré T (1977) Accumulation du manganèse par des espèces associées aux terrains ultrabasiques de Nouvelle Calédonie. Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences Série D 284:1573–1575

    Google Scholar 

  • Jaffré T (1980) Étude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. Travaux et Documents de I’ORSTOM, Paris (1980) Étude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie, Th Sci Nat Paris Sud-Orsay, 273 p

    Google Scholar 

  • Juice SM, Fahey TJ, Siccama Thomas G, Driscoll CT, Ellen G, Denny EG, Eagar C, Cleavitt Cleavitt NL, Minocha R, Richardson AD (2006) Response of sugar maple to calcium addition to northern hardwood forest. Ecology 87:1267–1280

    Article  Google Scholar 

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta 241:847–860

    Article  CAS  Google Scholar 

  • Kikuchi T, Tanaka S (2012) Biological removal and recovery of toxic heavy metals in water environment. Crit Rev Environ Sci Technol 42:1007–1057

    Article  CAS  Google Scholar 

  • Kim D, Gustin JL, Lahner B, Michael W, Baek D, Yun DJ (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39(2):237–251

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros Miguel A (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  Google Scholar 

  • Koppolua L, Agblover FA, Clements LD (2003) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenergy 25:651–663

    Article  CAS  Google Scholar 

  • Kovacs H, Szemmelveisz K (2017) Disposal options for polluted plants grown on heavy metal contaminated brownfield lands—a review. Chemosphere 166:8–20

    Article  CAS  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  Google Scholar 

  • Li MS, Luo YP, Su ZY (2007) Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environ Pollut 147:168–175

    Article  CAS  Google Scholar 

  • Li XX, Zhang X, Wang XL, Cui ZJ (2019a) Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. Ecotoxicol Environ Saf 180:517–525

    Article  CAS  Google Scholar 

  • Li XX, Wang XL, Chen YD, Yang XY, Cui ZJ (2019b) Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment. Ecotoxicol Environ Saf 168:1–8

    Article  CAS  Google Scholar 

  • Li Y, Lin JM, Huang YY, Yao YW, Wang XR, Liu CZ, Liang Y, Liu KH, Yu FM (2020) Bioaugmentation-assisted phytoremediation of manganese and cadmium co-contaminated soil by Polygonaceae plants (Polygonum hydropiper L. and Polygonum lapathifolium L.) and Enterobacter sp. FM-1. Plant Soil. https://doi.org/10.1007/s11104-020-04447-x

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker AJM, Reeves RD, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Liang WB, Xue SG, Shen JH, Wang P, Wang J (2011) Manganese stress on morphological structures of leaf and ultrastructures of chloroplast of a manganese hyperaccumulator—Phytolacca americana L. Acta Ecol Sin 31(13):3677–3683

    CAS  Google Scholar 

  • Lievens C, Yperman J, Vangronsveld J, Carleer R (2008) Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals. Fuel 87:1894–1905

    Article  CAS  Google Scholar 

  • Liu G, Shu H (2003) Research progress of ecological restoration in mine spoils. Jiangxi Forestry Science and Technology (in Chinese)

    Google Scholar 

  • Liu J, Mo LY, Zhang XH, Yao SY, Wang YX (2018) Simultaneous hyperaccumulation of cadmium and manganese in Celosia argentea Linn. Int J Phytoremediation 22(11):1106–1112

    Article  CAS  Google Scholar 

  • Liu P, Tang XM, Gong CF, Xu GD (2010) Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Plant Soil 335:385–395

    Article  CAS  Google Scholar 

  • Mesjasz-Przybylowicz J, Przybylowicz WJ, Pineda CA (2001) Nuclear microprobe studies of elemental distribution in apical leaves of the Ni hyperaccumulator Berkheya coddii. South Afr J Sci 97:591–593

    CAS  Google Scholar 

  • Mukhopadhyay MJ, Sharma A (1991) Manganese in cell metabolism of higher plants. Bot Rev 57:117–149

    Article  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Najeeb U, Xu L, Ali S, Jilani G, Gong HJ, Shen WQ, Zhou WJ (2009) Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. J Hazard Mater 170:1156–1163

    Article  CAS  Google Scholar 

  • Nayak AK, Panda SS, Basu A, Dhal NK (2018) Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremedition 20(7):682–691

    Article  CAS  Google Scholar 

  • Nicks LJ, Chambers MF (1998) A pioneering study of the potential of phytomining for nickel. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB international, pp 313–326

    Google Scholar 

  • Pan G, Yan WD, Zhang HP, Xiao ZH, Li XH, Liu WS, Zheng L (2019) Subcellular distribution and chemical forms involved in manganese accumulation and detoxification for Xanthium strumarium L. Chemosphere 237:124531

    Article  CAS  Google Scholar 

  • Papadakis IE, Giannakoula A, Therios IN, Bosabalidis AM, Moustakas M, Nastou A (2007) Mn-induced changes in leaf structure and chloroplast ultrastructure of Citrus volkameriana (L.) plants. J Plant Physiol 164:100–103

    Article  CAS  Google Scholar 

  • Paschke MW, Valdecantos A, Redente EF (2005) Manganese toxicity thresholds for restoration grass species. Environ Pollut 135:313–322

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Peris M, MicóC Recatalá L, Sánchez R, Sánchez J (2007) Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci Total Environ 378:42–48

    Article  CAS  Google Scholar 

  • Reimann C, Caritat PD (1998) Chemical elements in the environment: factsheets for the geochemist and environmental scientist. Springer, Berlin, p 398

    Book  Google Scholar 

  • Ren LM, Liu P, Cai MZ, Gen-Di XU, Fang XY, Cheng ZX (2007) Physiological response of Polygonum hydropiper, Comnyza canadensis, Polygonum perfoliatum and Phytolacca americana to manganese toxicity. J Soil Water Conserv 21:81–85

    Google Scholar 

  • Ren LM, Cheng ZF, Liu P, Li ZG (2008) Studies on the physiological response of Phytolacca americana to manganese toxicity by FTIR spectroscopy. Spectrosc Spect Anal 28(3):582–585

    CAS  Google Scholar 

  • Rivera-Becerril F, Juárez-Vázquez LV, Hernández-Cervantes SC, Acevedo-Sandoval OA, Vela-Correa G, Cruz-Chávez E, Moreno-Espíndola IP, Esquivel-Herrera A, de León-González F (2013) Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza. Arch Environ Contam Toxicol 64:219–227

    Article  CAS  Google Scholar 

  • Rizwan M, Meunier JD, Davidian JC (2015) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Rev 23(2):1414–1427

    Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  • Robinson BH, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158:279–285

    Article  CAS  Google Scholar 

  • Salo K, Mojtahedi W (1998) Fate of alkali and trace metals in biomass gasification. Biomass Bioenerg 15:263–267

    Article  CAS  Google Scholar 

  • Shao Z, Sun F (2007) Intracellular sequestration of manganese and phosphorus in a metal-resistant fungus Cladosporium cladosporioides from deep-sea sediment. Extremophiles 11:435–443

    Article  CAS  Google Scholar 

  • Shi Q, Zhu Z, Xu M, Qian Q, Yu J (2006) Effect of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities. Environ Exp Bot 58:197–205

    Article  CAS  Google Scholar 

  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    Article  CAS  Google Scholar 

  • Singh A, Zeng DH, Chen FS (2005) Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India. J Environ Sci 17:168–174

    CAS  Google Scholar 

  • St Clair SB, Lynch JP (2004) Photosynthetic and antioxidant enzyme responses of sugar maple and red maple seedlings to excess manganese in contrasting light environments. Funct Plant Biol 31:1005–1014

    Article  Google Scholar 

  • St Clair SB, Lynch JP (2005) Element accumulation patterns of deciduous and evergreen tree seedlings on acid soils: implications for sensitivity to manganese toxicity. Tree Physiol 25:85–92

    Article  CAS  Google Scholar 

  • St Clair SB, Carlson JE, Lynch JP (2005) Evidence for oxidative stress in sugar maple stands growing on acidic, nutrient imbalanced forest soils. Oecologia 145:258–269

    Article  Google Scholar 

  • Stals M, Thijssen E, Vangronsveld J, Carleer R, Schreurs S, Yperman J (2010) Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. J Anal Appl Pyrolysis 87:1–7

    Article  CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Tang YK, Kang HY, Qin ZY, Zhang KX, Zhong YX, Li HL, Mo LH (2020) Significance of manganese resistant bacillus cereus strain WSE01 as a bioinoculant for promotion of plant growth and manganese accumulation in Myriophyllum verticillatum. Sci Total Environ 7070:135867

    Article  CAS  Google Scholar 

  • Wang X, Liu Y, Zeng G, Chai L, Xiao X, Song XC, Min ZY (2008) Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere 72:1260–1266

    Article  CAS  Google Scholar 

  • Wang SS, Gao B, Li Y, Sik Ok Y, Shen CF, Xue SG (2017) Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: a case study of Phytolacca acinosa Roxb. (Phytolaccaceae). Chemosphere 178:59–64

    Article  CAS  Google Scholar 

  • Wang J, Cheng QY, Xue SG, Rajendran M, Wu C, Liao JX (2018a) Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland. Environ Sci Pollut Res 25:9998–10005

    Article  CAS  Google Scholar 

  • Wang J, Luo XH, Zhang YF, Huang YH, Rajendran M, Xue SG (2018b) Plant species diversity for vegetation restoration in manganese tailing wasteland. Environ Sci Pollut Res 25:24101–24110

    Article  CAS  Google Scholar 

  • Weng XY, Zhao LL, Zheng CJ, Zhu JW (2013) Characteristics of the hyperaccumulator plant Phytolacca acinosa (Phytolaccaceae) in response to excess manganese. J Plant Nutr 36:1355–1365

    Article  CAS  Google Scholar 

  • Wissemeier AH, Horst WJ (1992) Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 143(2):299–309

    Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Wu C, Zou Q, Xue SG, Pan WS, Yue X, Hartley W, Huang L, Mo JY (2016) Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants. Chemosphere 165:478–486

    Article  CAS  Google Scholar 

  • Wu C, Huang L, Xue SG, Pan WS, Zou Q, Hartley W, Wong MH (2017) Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice. Chemosphere 168:969–975

    Article  CAS  Google Scholar 

  • Xu XH, Shi JY, Chen Y, Chen X, Wang H, Perera A (2006) Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 285:323–331

    Article  CAS  Google Scholar 

  • Xu XH, Shi JY, Chen XC, Chen YX, Hu TD (2009) Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 318:197–204

    Article  CAS  Google Scholar 

  • Xu XH, Yang JJ, Zhao XY, Zhang XS, Li RY (2015) Molecular binding mechanisms of manganese to the root cell wall of Phytolacca americana L. using multiple spectroscopic techniques. J Hazard Mater 296:185–191

    Article  CAS  Google Scholar 

  • Xue SG (2002) Ecological restoration experiment on Xiangtan Manganese Tailings in Southern China. Master’s thesis, Central-South Forestry University, China (in Chinese)

    Google Scholar 

  • Xue SG, Chen YX, Lin Q, Xu SY, Wang YP (2003) Phytolacca acinosa Roxb. (Phytolaccaceae): a new manganese hyperaccumulator plant from southern China. Acta Ecol Sin 23:935–937

    Google Scholar 

  • Xue SG, Chen YX, Reeves RD, Baker AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399

    Article  CAS  Google Scholar 

  • Xue SG, Chen YX, Baker AJM, Reeves RD (2005) Manganese uptake and accumulation by two populations of Phytolacca acinosa Roxb. (Phytolaccaceae). Water Air Soil Poll 160:3–14

    Article  CAS  Google Scholar 

  • Xue SG, Ye S, Zhou F, Tian SX, Wang J, Xu SY, Chen YX (2008) Identity of Phytolacca americana L. (Phytolaccaceae), Pokeweed: a manganese hyperaccumulator plant. Acta Ecol Sin 28(12):6344–6347 (in Chinese)

    Google Scholar 

  • Xue SG, Wang J, Zhou XH, Liu H, Chen YX (2010) A critical reappraisal of Phytolacca acinosa Roxb. (Phytolaccaceae)—a manganese-hyperaccumulating plant. Acta Ecol Sin 30:335–338

    Article  Google Scholar 

  • Xue SG, Zhu F, Wu C, Lei J, Hartley W, Pan WS (2016) Effects of manganese on the microstructures of Chenopodium ambrosioides L. a manganese tolerant plant. Int J Phytoremediation 18:710–719

    Article  CAS  Google Scholar 

  • Xue SG, Wang J, Wu C, Li S, Hartley W, Wu H, Zhu F, Cui MQ (2018) Physiological response of Polygonum perfoliatum L. following exposure to elevated manganese concentrations. Environ Sci Pollut Res 25:132–140

    Article  CAS  Google Scholar 

  • Yang QW, Zeng Q, Xiao F, Liu XL, Pan J, Feng J, Yong HZ (2013) Investigation of manganese tolerance and accumulation of two Mn hyperaccumulators Phytolacca americana L. and Polygonum hydropiper L. in the real Mn-contaminated soils near a manganese mine. Environ Earth Sci 68:1127–1134

    Article  CAS  Google Scholar 

  • Yang SX, Li MS, Li Y, Huang HR (2006) Study on heavy metal pollution in soil and plants in Pingle Manganese Mine, Guangxi and implications for ecological restoration. Min Saf Environ Prot 1:21–23 (in Chinese)

    CAS  Google Scholar 

  • Yang SX, Deng H, Li MS (2008) Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ 54:441–446

    Article  CAS  Google Scholar 

  • Yang J, Zhong LY, Guo RF (2011) Release of Mn(II) during organic acid promoted dissolution of latosol. Environ Chem 30(7):1348–1353

    CAS  Google Scholar 

  • Yang QW, Ke HM, Liu SJ, Zeng Q (2018) Phytoremediation of Mn-contaminated paddy soil by two hyperaccumulators (Phytolacca americana and Polygonum hydropiper) aided with citric acid. Environ Sci Pollut Res 25(26):25933–25941

    Article  CAS  Google Scholar 

  • Yuan M, Boqing T, Tang M, Aoyama I (2007) Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana. Miner Eng 20:188–190

    Article  CAS  Google Scholar 

  • Zhang HZ, Liu YG, Huang BR, Xin LI (2004) A survey of heavy-metal content in plants growing on the soil polluted by manganese mine tailings. Chin J Ecol 23:111–113 (in Chinese)

    CAS  Google Scholar 

  • Zhang X, Houzelot V, Bani A, Morel JL, Echevarria G, Simonnot M-O (2014) Selection and combustion of Ni hyperaccumulators for the phytomining process. Inter J Phytoremediation 16:1058–1072

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengguo Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, C., An, W., Xue, S. (2021). Element Case Studies: Manganese. In: van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, MO., Morel, J.L. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-58904-2_21

Download citation

Publish with us

Policies and ethics