Skip to main content

Maximizing Submodular or Monotone Functions Under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12270))

Included in the following conference series:

Abstract

Many important problems can be regarded as maximizing submodular functions under some constraints. A simple multi-objective evolutionary algorithm called GSEMO has been shown to achieve good approximation for submodular functions efficiently. While there have been many studies on the subject, most of existing run-time analyses for GSEMO assume a single cardinality constraint. In this work, we extend the theoretical results to partition matroid constraints which generalize cardinality constraints, and show that GSEMO can generally guarantee good approximation performance within polynomial expected run time. Furthermore, we conducted experimental comparison against a baseline GREEDY algorithm in maximizing undirected graph cuts on random graphs, under various partition matroid constraints. The results show GSEMO tends to outperform GREEDY in quadratic run time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific Publishing Co., Inc., Singapore (2011)

    MATH  Google Scholar 

  2. Balcan, M.F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: Proceedings of the 9th ACM Conference on Electronic Commerce, EC 2008, pp. 50–59. ACM, New York (2008). https://doi.org/10.1145/1386790.1386802

  3. Bhawalkar, K., Roughgarden, T.: Welfare guarantees for combinatorial auctions with item bidding. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 700–709. Society for Industrial and Applied Mathematics, Philadelphia (2011). https://doi.org/10.1137/1.9781611973082.55

  4. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, vol. 70, pp. 498–507. JMLR.org (2017)

    Google Scholar 

  5. Buchbinder, N., Feldman, M., Garg, M.: Deterministic \((1/2 + \epsilon )\)-approximation for submodular maximization over a matroid. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pp. 241–254. Society for Industrial and Applied Mathematics, Philadelphia (2019)

    Google Scholar 

  6. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27821-4_7

    Chapter  MATH  Google Scholar 

  7. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the rado-edmonds theorem. Discret. Appl. Math. 7(3), 251–274 (1984). https://doi.org/10.1016/0166-218X(84)90003-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. Wiley, Hoboken (2009)

    Book  Google Scholar 

  9. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manag. Sci. 23(8), 789–810 (1977). https://doi.org/10.1287/mnsc.23.8.789

    Article  MathSciNet  MATH  Google Scholar 

  10. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011). https://doi.org/10.1137/080733991

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML 2011, Omnipress, Madison, WI, USA, pp. 1057–1064 (2011)

    Google Scholar 

  12. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation - Recent Developments in Discrete Optimization. Natural Computing Series. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4

    Book  MATH  Google Scholar 

  13. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011). https://doi.org/10.1137/090779346

    Article  MathSciNet  MATH  Google Scholar 

  14. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problems. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm, SODA 2006, pp. 611–620. Society for Industrial and Applied Mathematics, Philadelphia (2006). https://doi.org/10.1145/1109557.1109624

  15. Friedrich, T., Göbel, A., Neumann, F., Quinzan, F., Rothenberger, R.: Greedy maximization of functions with bounded curvature under partition matroid constraints. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2272–2279 (2019). https://doi.org/10.1609/aaai.v33i01.33012272

  16. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models*. Evol. Comput. 18(4), 617–633 (2010). https://doi.org/10.1162/EVCO_a_00003

    Article  Google Scholar 

  17. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid constraints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015). https://doi.org/10.1162/EVCO_a_00159

    Article  Google Scholar 

  18. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995). https://doi.org/10.1145/227683.227684

    Article  MathSciNet  MATH  Google Scholar 

  19. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001). https://doi.org/10.1145/502090.502096

    Article  MathSciNet  MATH  Google Scholar 

  20. Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science Perspective. Natural Computing Series. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

    Book  MATH  Google Scholar 

  21. Jegelka, S., Bilmes, J.: Submodularity beyond submodular energies: coupling edges in graph cuts. In: CVPR 2011, pp. 1897–1904 (2011). https://doi.org/10.1109/CVPR.2011.5995589

  22. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New York (2003). https://doi.org/10.1145/956750.956769

  23. Krause, A., Guestrin, C.: Submodularity and its applications in optimized information gathering. ACM Trans. Intell. Syst. Technol. 2(4), 32:1–32:20 (2011). https://doi.org/10.1145/1989734.1989736

    Article  Google Scholar 

  24. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008). https://doi.org/10.1145/1390681.1390689

    Article  MATH  Google Scholar 

  25. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective evolutionary algorithms on pseudo-boolean functidons. IEEE Trans. Evol. Comput. 8(2), 170–182 (2004). https://doi.org/10.1109/TEVC.2004.823470

    Article  MATH  Google Scholar 

  26. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 323–332. ACM, New York (2009). https://doi.org/10.1145/1536414.1536459

  27. Lengler, J.: Drift analysis. CoRR abs/1712.00964 (2017). http://arxiv.org/abs/1712.00964

  28. Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of submodular functions. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT 2010, pp. 912–920. Association for Computational Linguistics, Cambridge (2010)

    Google Scholar 

  29. Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, HLT 2011, pp. 510–520. Association for Computational Linguistics, Portland (2011)

    Google Scholar 

  30. Liu, Y., Wei, K., Kirchhoff, K., Song, Y., Bilmes, J.: Submodular feature selection for high-dimensional acoustic score spaces. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 7184–7188 (2013). https://doi.org/10.1109/ICASSP.2013.6639057

  31. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Korte, B., Grotschel, M. (eds.) Mathematical Programming the State of the Art, pp. 235–257. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-68874-4_10

    Chapter  Google Scholar 

  32. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978). https://doi.org/10.1287/moor.3.3.177

    Article  MathSciNet  MATH  Google Scholar 

  33. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization. Natural Computing Series. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16544-3

    Book  MATH  Google Scholar 

  34. Qian, C., Shi, J.C., Yu, Y., Tang, K.: On subset selection with general cost constraints. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 2613–2619 (2017). https://doi.org/10.24963/ijcai.2017/364

  35. Qian, C., Shi, J.C., Yu, Y., Tang, K., Zhou, Z.H.: Parallel pareto optimization for subset selection. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 1939–1945. AAAI Press (2016)

    Google Scholar 

  36. Qian, C., Yu, Y., Tang, K., Yao, X., Zhou, Z.H.: Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms. Artif. Intell. 275, 279–294 (2019). https://doi.org/10.1016/j.artint.2019.06.005

    Article  MathSciNet  MATH  Google Scholar 

  37. Queyranne, M.: A combinatorial algorithm for minimizing symmetric submodular functions. In: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1995, pp. 98–101. Society for Industrial and Applied Mathematics, Philadelphia (1995)

    Google Scholar 

  38. Stobbe, P., Krause, A.: Efficient minimization of decomposable submodular functions. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems, NIPS 2010, vol. 2, pp. 2208–2216. Curran Associates Inc., New York (2010)

    Google Scholar 

  39. Syrgkanis, V., Tardos, É.: Composable and efficient mechanisms. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 211–220. ACM, New York (2013). https://doi.org/10.1145/2488608.2488635

  40. Vondrák, J.: Submodularity and curvature: the optimal algorithm. RIMS Kôkyûroku Bessatsu B23, pp. 253–266 (2010)

    Google Scholar 

  41. Wei, K., Iyer, R., Bilmes, J.: Submodularity in data subset selection and active learning. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 1954–1963. JMLR.org (2015)

    Google Scholar 

  42. Zhou, Z., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories and Algorithms. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5956-9

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The experiments were run using the HPC service provided by the University of Adelaide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Do, A.V., Neumann, F. (2020). Maximizing Submodular or Monotone Functions Under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics