Skip to main content

Introductory Approaches for Applying Artificial Intelligence in Clinical Medicine

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

The urge of computerized, automatized medical decision making as well as having more efficient and organized health data records for financial and medical purposes have brought the necessity to introduce artificial intelligence algorithms to healthcare.

The first artificial intelligence applications in the medical field were to be seen in the introduction of Electronic Health Records followed by the development of Learning Health Systems and Clinical Decision Support systems.

Currently, the development and increment of artificial intelligence applications by larger and smaller entities from all over the world is in an ongoing process, following the market and its needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. “Algorithms Need Managers Too”, Harvard Business Review. 2016.

    Google Scholar 

  2. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Prafulla D, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler DM, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D. Language models are few-shot learners. arXiv:2005.14165. 2020

    Google Scholar 

  3. X-ray by courtesy to Dr. Mikael Häggström, radiologist, NU Hospital, Gothenburg, Sweden, 2017. Creator of the WikiJournal of Medicine and Radlines, providing open access guidelines for radiologists.

    Google Scholar 

  4. Coiera E. Guide to medical informatics, the internet and telemedicine. London: Chapman & Hall; 1997.

    Google Scholar 

  5. Webinar. CB Insights. Artificial Intelligence report, 28 June 2016.

    Google Scholar 

  6. Kent J. Providers Embrace Predictive Analytics for Clinical, Financial Benefits. HealthITAnalytics, 08 August 2018.

    Google Scholar 

  7. Lee K. Predictive analytics in healthcare helps improve OR utilization. SearchHealthIT.

    Google Scholar 

  8. Wallach W. Moral machines, (mentioned in the introductory chapter). Oxford: Oxford University Press; 2010.

    Google Scholar 

  9. Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. DENDRAL: a case study of the first expert system for scientific hypothesis formation. Artif Intell. 1993;61(2):209–61.

    Article  Google Scholar 

  10. Clancey WJ, Shortliffe EH. Readings in medical artificial intelligence: the first decade. Boston: Addison-Wesley Longman Publishing; 1984.

    Google Scholar 

  11. Bruce G, Buchanan BG, Shortliffe ED. Rule-based expert systems: the MYCIN experiments of the Stanford Heuristic Programming Project. 1984

    Google Scholar 

  12. Duda RO, Shortliffe EH. Expert systems research. Science. 1983;220(4594):261–8.

    Article  CAS  Google Scholar 

  13. Miller RA. Medical diagnostic decision support systems – past, present, and future. J Am Med Inform Assoc. 1994;1(1):8–27.

    Article  CAS  Google Scholar 

  14. Baxt WG. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991;115(11):843–8.

    Article  CAS  Google Scholar 

  15. Maclin PS, Dempsey J, Brooks J, Rand J. Using neural networks to diagnose cancer. J Med Syst. 1991;15(1):11–9.

    Article  CAS  Google Scholar 

  16. Reggia JA, Peng Y. Modelling diagnostic reasoning: a summary of parsimonious covering theory. Comput Methods Prog Biomed. 1987;25(2):125–34.

    Article  CAS  Google Scholar 

  17. Adlassnig KP. A fuzzy logical model of computer-assisted medical diagnosis. Methods Inf Med. 1980;19:14.

    Google Scholar 

  18. Koomey J, Berard S, Sanchez M, Wong H. Implications of historical trends in the electrical efficiency of computing. IEEE Ann Hist Comput. 2011;33(3):46–54.

    Article  Google Scholar 

  19. Dinov ID. Volume and Value of Big Healthcare Data. J Med Stat Inform. 2016;4:3. https://doi.org/10.7243/2053-7662-4-3

  20. “Artificial Intelligence and Machine Learning for Healthcare” Sigmoidal, 21 December 2017.

    Google Scholar 

  21. Barnes B, Dupré J. Genomes and what to make of them. Chicago: University of Chicago Press; 2009.

    Google Scholar 

  22. Jha AK, DesRoches CM, Campbell EG, Donelan K, Rao SR, Ferris TG, … Blumenthal D. Use of electronic health records in US hospitals. N Engl J Med. 2009;360(16):1628–38.

    Google Scholar 

  23. Dougherty G. Digital image processing for medical applications. Cambridge: Cambridge University Press; 2009.

    Google Scholar 

  24. Banko M, Brill E. Scaling to a very large corpora for natural language disambiguation. In: Proceedings of the 39th annual meeting on association for computational linguistics. Association for Computational Linguistics; 2001. p. 26–33.

    Google Scholar 

  25. Burgess M. “Now DeepMind’s AI can spot eye disease just as well as your doctor”. Wired UK, 13 August 2018.

    Google Scholar 

  26. Credit: Google DeepMind.

    Google Scholar 

  27. Patcas R, Bernini DAJ, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int J Oral Maxillofac Surg. 2019;48(1):77–83.

    Article  CAS  Google Scholar 

  28. “Artificial Intelligence in Radiology: The Game-Changer on Everyone’s Mind”. Radiology Business, 13 October 2017.

    Google Scholar 

  29. Among others: the Radiological Society of Northern America, European Society of Radiology.

    Google Scholar 

  30. Chockley K, Emanuel E. The end of radiology? Three threats to the future practice of radiology. J Am Coll Radiol. 2016;13(12):1415–20.

    Article  Google Scholar 

  31. Jha S, Topol EJ. Adapting to Artificial Intelligence. JAMA. 2016;316(22):2353–4.

    Article  Google Scholar 

  32. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C. CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv:1711.05225. 2017

    Google Scholar 

  33. Pacis D. Trends in telemedicine utilizing artificial intelligence. AIP Conf Proc. 2018;1933:040009.

    Article  Google Scholar 

  34. Melnick ER, Dyrbye LN, Sinsky CA, Trockel M, West CP, Nedelec L, Tutty MA, Shanafelt T. The Association Between Perceived Electronic Health Record Usability and Professional Burnout Among US Physicians. Mayo Clin Proc. 2020;95(3):476–487. https://doi.org/10.1016/j.mayocp.2019.09.024

  35. “Everything you need to know about electronic health records”. Allison Tsai, May 2015.

    Google Scholar 

  36. The Learning Healthcare System: Workshop Summary. Olsen L, Aisner D, McGinnis JM, editors. Institute of Medicine (US). ISBN 978-0-309-10300-8, July 2006.

    Google Scholar 

  37. Institute of Medicine. Digital infrastructure for the learning health system: the Foundation for Continuous Improvement in Health and Health Care. Washington, DC: Institute of Medicine; 2011. ISBN 0-309-15416-2

    Google Scholar 

  38. McLachlan S, Potts HWW, Dube K, Buchanan D, Lean S, Gallagher T, Johnson O, Daley B, Marsh W, Fenton N. The Heimdall framework for supporting characterisation of learning health systems. J Innov Health Inform. 2018;25(2):77–87.

    PubMed  Google Scholar 

  39. Greene S, Geiger A. A review finds that multicenter studies face substantial challenges but strategies exist to achieve Institutional Review Board approval. J Clin Epidemiol. 2006;59(8):784–90.

    Article  Google Scholar 

  40. Ethier J-F, McGilchrist M, Barton A, Cloutier A-M, Curcin V, Delaney B, Burgun A. The TRANSFoRm project: experience and lessons learned regarding functional and interoperability requirements to support primary care. Learn Health Syst. 2018;2:e10037. https://doi.org/10.1002/lrh2.10037.

    Article  PubMed  Google Scholar 

  41. McLachlan S, Dube K, Johnson O, Buchanan D, Potts HWW, Gallagher T, Fenton N. A framework for analysing learning health systems: Are we removing the most impactful barriers? Learn Health Syst. 2019;3(4):e10189. https://doi.org/10.1002/lrh2.10189

  42. Forrest C, Margolis P, Seid M, Colletti RB. PEDSnet: how a prototype pediatric learning health system is being expanded into a national network. Health Aff. 2014;33(7):1171–7.

    Article  Google Scholar 

  43. Taylor P. From patient data to medical knowledge: the principles and practice of health informatics. London: Blackwell Publishing; 2007.

    Google Scholar 

  44. Deeny S, Steventon A. Making sense of the shadows: priorities for creating a learning healthcare system based on routinely collected data. BMJ Qual Saf. 2015;24:505–15.

    Article  Google Scholar 

  45. Abernethy A, Ahmad A, Zafar SY, Wheeler JL, Reese JB, Lyerly HK. Electronic patient-reported data capture as a foundation of rapid learning cancer care. Med Care. 2010;48(6):S32–8.

    Article  Google Scholar 

  46. Friedman C, Wong A, Blumenthal D. Achieving a nationwide learning health system. Sci Transl Med. 2010;2(57):1–3.

    Article  Google Scholar 

  47. Bradley E, Curry LA, Ramanadhan S, Rowe L, Nembhard IM, Krumholz HM. Research in action: using positive deviance to improve quality of healthcare. BMC Implement Sci. 2009;4:25.

    Article  Google Scholar 

  48. Lewis G, Kirkham H, Vaithianathan R. How health systems could avert ‘triple fail’ events that are harmful, are costly, and result in poor patient satisfaction. Health Aff. 2013;32(4):669–76.

    Article  Google Scholar 

  49. Ye Y, Wamukoya M, Ezeh A, Emina JB, Sankoh O. Health and Demographic Surveillance Systems: a step towards full civil registration and vital statistics in sub-Saharan Africa? BMC Public Health. 2012;12:741.

    Article  Google Scholar 

  50. Paul MR. What merger mania means for health care. CNN Money, 04 November 2018.

    Google Scholar 

  51. Horvitz EJ, Breese JS, Henrion M. Decision theory in expert systems and artificial intelligence. Int J Approx Reason. 1988;2(3):247–302.

    Article  Google Scholar 

  52. Primack D. Intel Capital Cancels $1 Billion Portfolio Sale. Fortune, 2016.

    Google Scholar 

  53. Lorenzetti L. From cancer to consumer tech: a look inside IBM’s Watson health strategy. Fortune, 5 April 2016.

    Google Scholar 

  54. Cohn J. The robot will see you now. The Atlantic 2013, 20 February 2013.

    Google Scholar 

  55. Knapton S. Microsoft will ‘solve’ cancer within 10 years by ‘reprogramming’ diseased cells. The Telegraph.

    Google Scholar 

  56. Bass D. Microsoft develops AI to help cancer doctors find the right treatments. New York: Bloomberg; 2016.

    Google Scholar 

  57. Proffitt C. Top 10 artificially intelligent personal assistants. Disruptor Daily, 2017.

    Google Scholar 

  58. Garbuio M, Lin N. Artificial intelligence as a growth engine for health care startups: emerging business models. Calif Manag Rev. 2019;61(2):59–83.

    Article  Google Scholar 

  59. Parkin S. The artificially intelligent doctor will hear you now. MIT Technology Review 2016. https://www.technologyreview.com/2016/03/09/8890/the-artificially-intelligent-doctor-will-hear-you-now/

  60. Haigh L. Bringing AEI technology into hospitals. International Travel Health Insurance Journal 2019. https://www.itij.com/latest/news/bringing-aei-technology-hospitals

  61. Accenture Analysis. accenture.com

    Google Scholar 

  62. UnivDatos.com Market Insights, Artificial Intelligence (AI) in Healthcare – Market Size, Trends and Competitive Landscape: Global Market Forecast to Artificial Intelligence (AI) i Healthcare – Market Size, Trends and Competitive Landscape: Global Market Forecast to 20252025. https://www.prnewswire.com/in/news-releases/artificial-intelligence-ai-in-healthcare-market-to-reach-us-26-5-billion-by-2025-globally-cagr-41-univdatos-market-insights-842269344.html

  63. Lagasse J. Why artificial intelligence won’t replace doctors. Healthcare Finance Journal 2018. https://www.healthcarefinancenews.com/news/why-artificial-intelligence-wont-replace-doctors

  64. Minku LL, Levesley J. AI doctors and engineers are coming – but they won’t be stealing high-skill jobs. The Conversation UK, 20 August 2018.

    Google Scholar 

  65. Novatio. 10 Common Applications of Artificial Intelligence in Health Care. Novatio, 30 August 2017.

    Google Scholar 

  66. Murphy K, Habib SS, Zaidi SMA, Khowaja S, Khan A, Melendez J, Scholten ET, Amad F, Schalekamp S, Verhagen M, Philipsen RHHM, Meijers A, van Ginneken B. Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system. Sci Rep. 2020;10(1):1–11. Nature.com

    Article  Google Scholar 

  67. Zhou SK, Greenspan H, Davatzikos C, Duncan JS, van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM. A review of deep learning in medical imaging: image traits, technology trends, case studies with progress highlights, and future promises. arXiv preprint arXiv:2008.09104. 2020

    Google Scholar 

  68. http://grand-challenge.org/challenges/

  69. Lemoigne, Yves; Caner, Alessandra (Eds.), Molecular Imaging: Computer Reconstruction and Practice, ISBN 978-1-4020-8750-9. https://doi.org/10.1007/978-1-4020-8752-3, Springer Netherlands, 2008.

  70. Versi E. “Gold standard” is an appropriate term. BMJ. 1992;305(6846):187.

    Article  CAS  Google Scholar 

  71. Antonia FC, Adam CZ, Alexander RV. Point/Counterpoint: Artificial Intelligence in Healthcare. Healthcare Transformation 2017;2(2). https://doi.org/10.1089/heat.2017.29042.pcp

  72. Hammar, Tora. eMedication – improving medication management using information technology, Linnaeus University Dissertations; 188/2014, ISBN: 978-91-87925-15-3, ORCID iD: 0000-0003-1549-2469, URN: urn:nbn:se:lnu:diva-37167

    Google Scholar 

  73. Moja L, Kwag KH, Lytras T, Bertizzolo L, Brandt L, Pecoraro V, Rigon G, Vaona A, Ruggiero F, Mangia M, Iorio A, Kunnamo I, Bonovas S. Effectiveness of computerized decision support systems linked to electronic health records: a systematic review and meta-analysis. Am J Public Health. 2014;104(12):e12–22.

    Article  Google Scholar 

  74. Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.

    Article  CAS  Google Scholar 

  75. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005;330(7494):765.

    Article  Google Scholar 

  76. Black AD, Car J, Pagliari C, Anandan C, Cresswell K, Bokun T, McKinstry B, Procter R, Majeed A, Sheikh A. The impact of eHealth on the quality and safety of health care: a systematic overview. PLoS Med. 2011. Jan 18;8(1):e1000387. https://doi.org/10.1371/journal.pmed.1000387

  77. Nachtigall I, Tafelski S, Deja M, Halle E, Grebe MC, Tamarkin A, Rothbart A, Unrig A, Meyer E, Musial-Bright L, Wernecke KD, Spies C. Long-term effect of computer-assisted decision support for antibiotic treatment in critically ill patients: a prospective ‘before/after’ cohort study. BMJ Open. 2014;4(12):e005370.

    Article  CAS  Google Scholar 

  78. Berner ES, editor. Clinical decision support systems. New York: Springer; 2007.

    Google Scholar 

  79. Begum S, Ahmed MU, Funk P, Xiong N, Folke M. Case-based reasoning systems in the health sciences: a survey of recent trends and developments. IEEE Trans Syst Man Cybern Part C Appl Rev. 2011;41(4):421–34.

    Article  Google Scholar 

  80. Khosla V. Technology will replace 80% of what doctors do. CNN, 4 December 2012.

    Google Scholar 

  81. Bergmann, et al. Case-based reasoning – introduction and recent developments. Künstl Intell. 2009;1:5–11.

    Google Scholar 

  82. Dehghani Soufi P, Samad-Soltani M, Shams Vahdati T, Rezaei-Hachesu S. Decision support system for triage management: a hybrid approach using rule-based reasoning and fuzzy logic. Int J Med Inform. 2018;114:35–44.

    Article  Google Scholar 

  83. “HL7 CDS Standards”. HL7 CDS Working Group, 2 August 2019.

    Google Scholar 

  84. Spie. Tanveer Syeda-Mahmood plenary talk: the role of machine learning in clinical decision support. SPIE Newsroom, March 2015.

    Google Scholar 

  85. Wagholikar K, Sundararajan V, Deshpande A. Modeling paradigms for medical diagnostic decision support: a survey and future directions. J Med Syst. 2012;36(5):3029–49.

    Article  Google Scholar 

  86. The thesis author’s own term, not widely used, but inserted here for pedagogic effect.

    Google Scholar 

  87. Mitchell M. An introduction to genetic algorithms. Cambridge, MA: MIT Press; 1996. ISBN 9780585030944

    Google Scholar 

  88. Balamurugan R, Natarajan AM, Premalatha K. Stellar-mass black hole optimization for biclustering microarray gene expression data. Appl Artif Intell Int J. 2015;29(4):353–81.

    Article  Google Scholar 

  89. Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ. A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput. 2009;8(2):239–87.

    Article  Google Scholar 

  90. Boyd SP, Vandenberghe L. Convex optimization. Cambridge: Cambridge University Press; 2004. p. 129. ISBN 978-0-521-83378-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Lidströmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lidströmer, N., Aresu, F., Ashrafian, H. (2021). Introductory Approaches for Applying Artificial Intelligence in Clinical Medicine. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics