Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 265))

  • 736 Accesses

Abstract

The objective of this chapter is to discuss purely mechanical constitutive equations. After identifying unphysical arbitrariness of the classical Lagrangian formulation of constitutive equations, an Eulerian formulation for nonlinear elastic materials is developed using evolution equations for microstructural vectors \({\mathbf {m}}_i\). The influence of kinematic constraints on constitutive equations is discussed and specific nonlinear constitutive equations are presented for a number of materials including: elastic solids, viscous fluids and elastic–inelastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asaro RJ (1983) Micromechanics of crystals and polycrystals. Adv Appl Mech 23:1–115

    Article  Google Scholar 

  2. Barenblatt GI, Joseph DD (2013) Collected papers of RS Rivlin: volume I and II. Springer Science & Business Media, New York

    Google Scholar 

  3. Bernstein B (1960) Hypo-elasticity and elasticity. Arch Rational Mech Anal 6:89–104

    Article  MathSciNet  Google Scholar 

  4. Besseling JF (1968) A thermodynamic approach to rheology. Irreversible aspects of continuum mechanics and transfer of physical characteristics in moving fluids, pp 16–53

    Google Scholar 

  5. Besseling JF, Van Der Giessen E (1994) Mathematical modeling of inelastic deformation. CRC Press, Boca Raton

    Google Scholar 

  6. Bilby BA, Gardner LRT, Stroh AN (1957) Continuous distributions of dislocations and the theory of plasticity. In: Proceedings of the 9th international congress of applied mechanics, vol 9. University de Brussels, pp 35–44

    Google Scholar 

  7. Bodner SR (1968) Constitutive equations for dynamic material behavior. Mechanical behavior of materials under dynamic loads. Springer, Berlin, pp 176–190

    Google Scholar 

  8. Bodner SR (1987) Review of a unified elastic-viscoplastic theory. Unified constitutive equations for creep and plasticity, pp 273–301

    Google Scholar 

  9. Bodner SR (2002) Unified plasticity for engineering applications. Mathematical concepts and methods in science and engineering, vol 47. Kluwer, New York

    Google Scholar 

  10. Bodner SR, Partom Y (1972) A large deformation elastic-viscoplastic analysis of a thick-walled spherical shell. J Appl Mech 39:751–757

    Article  Google Scholar 

  11. Bodner SR, Partom Y (1975) Constitutive equations for elastic-viscoplastic strain-hardening materials. J Appl Mech 42:385–389

    Article  Google Scholar 

  12. Eckart C (1948) The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys Rev 73:373–382

    Article  MathSciNet  Google Scholar 

  13. Farooq H, Cailletaud G, Forest S, Ryckelynck D (2020) Crystal plasticity modeling of the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading: global and local analyses. Int J Plast 126:102619

    Article  Google Scholar 

  14. Flory PJ (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838

    Article  MathSciNet  Google Scholar 

  15. Forest S, Rubin MB (2016) A rate-independent crystal plasticity model with a smooth elastic-plastic transition and no slip indeterminacy. Eur J Mech-A/Solids 55:278–288

    Article  MathSciNet  Google Scholar 

  16. Green AE, Naghdi PM (1965) A general theory of an elastic-plastic continuum. Arch Rational Mech Anal 18:251–281

    Article  MathSciNet  Google Scholar 

  17. Hill R (1966) Generalized constitutive relations for incremental deformation of metal crystals by multislip. Arch Rational Mech Anal 14:95–102

    Google Scholar 

  18. Hollenstein M, Jabareen M, Rubin MB (2013) Modeling a smooth elastic-inelastic transition with a strongly objective numerical integrator needing no iteration. Comput Mech 52:649–667

    Article  MathSciNet  Google Scholar 

  19. Hollenstein M, Jabareen M, Rubin MB (2015) Erratum to: modeling a smooth elastic-inelastic transition with a strongly objective numerical integrator needing no iteration. Comput Mech 55:453–453

    Google Scholar 

  20. Jabareen M (2015) Strongly objective numerical implementation and generalization of a unified large inelastic deformation model with a smooth elastic-inelastic transition. Int J Eng Sci 96:46–67

    Article  MathSciNet  Google Scholar 

  21. Kröner E (1959) General continuum theory of dislocations and intrinsic stresses. Arch Rational Mech Anal 4:273–334

    Article  Google Scholar 

  22. Kroon M, Rubin MB (2020) A strongly objective, robust integration algorithm for Eulerian evolution equations modeling general anisotropic elastic-inelastic material response. Finite Elem Anal Des 177:103422

    Google Scholar 

  23. Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36:1–6

    Article  Google Scholar 

  24. Leonov AI (1976) Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol Acta 15:85–98

    Article  Google Scholar 

  25. Malvern LE (1951) The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect. J Appl Mech 18:203–208

    MathSciNet  Google Scholar 

  26. Mandel J (1973) Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int J Solids Struct 9:725–740

    Article  Google Scholar 

  27. Moss WC (1984) On the computational significance of the strain space formulation of plasticity theory. Int J Numer Methods Eng 20:1703–1709

    Article  Google Scholar 

  28. Naghdi PM (1960) Stress-strain relations in plasticity and thermoplasticity. In: Plasticity: proceedings of the second symposium on naval structural mechanics, pp 121–169

    Google Scholar 

  29. Naghdi PM (1990) A critical review of the state of finite plasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP 41:315–394

    Article  MathSciNet  Google Scholar 

  30. Naghdi PM, Trapp JA (1975) The significance of formulating plasticity theory with reference to loading surfaces in strain space. Int J Eng Sci 13:785–797

    Article  Google Scholar 

  31. Onat ET (1968) The notion of state and its implications in thermodynamics of inelastic solids. Irreversible aspects of continuum mechanics and transfer of physical characteristics in moving fluids, pp 292–314

    Google Scholar 

  32. Papes O (2013) Nonlinear continuum mechanics in modern engineering applications. PhD dissertation DISS ETH NO 19956

    Google Scholar 

  33. Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Q Appl Math 20:321–332

    Article  MathSciNet  Google Scholar 

  34. Rubin MB (1987) An elastic-viscoplastic model exhibiting continuity of solid and fluid states. Int J Eng Sci 25:1175–1191

    Article  Google Scholar 

  35. Rubin MB (1994) Plasticity theory formulated in terms of physically based microstructural variables - Part I. Theory. Int J Solids Struct 31:2615–2634

    Article  Google Scholar 

  36. Rubin MB (1996) On the treatment of elastic deformation in finite elastic-viscoplastic theory. Int J Plast 12:951–965

    Article  Google Scholar 

  37. Rubin MB (2001) Physical reasons for abandoning plastic deformation measures in plasticity and viscoplasticity theory. Arch Mech 53:519–539

    MATH  Google Scholar 

  38. Rubin MB (2012) Removal of unphysical arbitrariness in constitutive equations for elastically anisotropic nonlinear elastic-viscoplastic solids. Int J Eng Sci 53:38–45

    Article  MathSciNet  Google Scholar 

  39. Rubin MB (2016) A viscoplastic model for the active component in cardiac muscle. Biomech Model Mechanobiol 15:965–982

    Article  Google Scholar 

  40. Rubin MB (2019) An Eulerian formulation of inelasticity - from metal plasticity to growth of biological tissues. Trans R Soc A 377:20180071

    MathSciNet  MATH  Google Scholar 

  41. Rubin MB (2020) A strongly objective expression for the average deformation rate with application to numerical integration algorithms. Finite Elem Anal Des 175:103409

    Google Scholar 

  42. Rubin MB, Attia AV (1996) Calculation of hyperelastic response of finitely deformed elastic-viscoplastic materials. Int J Numer Methods Eng 39:309–320

    Article  Google Scholar 

  43. Rubin MB, Cardiff P (2017) Advantages of formulating an evolution equation directly for elastic distortional deformation in finite deformation plasticity. Comput Mech 60:703–707

    Article  MathSciNet  Google Scholar 

  44. Rubin MB, Papes O (2011) Advantages of formulating evolution equations for elastic-viscoplastic materials in terms of the velocity gradient instead of the spin tensor. J Mech Mater Struct 6:529–543

    Article  Google Scholar 

  45. Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40:401–445

    Article  MathSciNet  Google Scholar 

  46. Simo JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: computational aspects. Comput Methods Appl Mech Eng 68:1–31

    Article  Google Scholar 

  47. Truesdell C, Noll W (2004) The non-linear field theories of mechanics. Springer, Berlin, pp 1–579

    Google Scholar 

  48. Wilkins ML (1963) Calculation of elastic-plastic flow. Technical report, UCRL7322, California University Livermore Radiation Lab

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rubin .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rubin, M.B. (2021). Purely Mechanical Constitutive Equations. In: Continuum Mechanics with Eulerian Formulations of Constitutive Equations. Solid Mechanics and Its Applications, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-030-57776-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57776-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57775-9

  • Online ISBN: 978-3-030-57776-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics