Skip to main content

Ion Transport in Salt Glands and Bladders in Halophyte Species

  • Reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Salt secretion via salt glands is found in more than 50 species in 14 angiosperm families and represents a highly efficient way of dealing with excessive salt load in photosynthetically active mesophyll tissues. Equally efficient is the storage of cytotoxic NaCl in external structures such as epidermal bladder cells (salt bladders). In this chapter, we briefly summarize the current knowledge of physiological and molecular basis of salt sequestration and secretion through bladders and glands. First, the anatomical structure of three major types of secretory organs – salt bladders, salt glands, and secretory microhairs – is described. Then, the mechanistic basis of ion transport and metabolism in secretory structures are examined. The major focus is on five model species widely used in halophyte research: salt bladder-bearing Chenopodium quinoa and Mesembryanthemum crystallinum; Limonium bicolor and mangrove species possessing salt glands; and Oriza coarctata (wild rice) bearing secretory microhairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, P., Nelson, D. E., Yamada, S., Chmara, W., Jensen, R. G., Bohnert, H. J., & Griffiths, H. (1998). Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytologist, 138, 171–190.

    Article  CAS  PubMed  Google Scholar 

  • Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., Ueno, O., Nakahara, T., Nose, A., & Cushman, J. C. (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. Journal of Experimental Botany, 58, 1957–1967.

    Article  CAS  PubMed  Google Scholar 

  • Apse, M. P., Aharon, G. S., Snedden, W. A., & Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285, 1256.

    Article  CAS  PubMed  Google Scholar 

  • Balnokin, Y. V., Kurkova, E. B., Khalilova, L. A., Myasoedov, N. A., & Yusufov, A. G. (2007). Pinocytosis in the root cells of a salt-accumulating halophyte Suaeda altissima and its possible involvement in chloride transport. Russian Journal of Plant Physiology, 54, 797–805.

    Article  CAS  Google Scholar 

  • Balsamo, R. A., & Thomson, W. W. (1993). Ultrastructural features associated with secretion in the salt glands of Frankenia grandifolia (Frankeniaceae) and Avicennia germinans (Avicenniaceae). American Journal of Botany, 80, 1276–1283.

    Article  Google Scholar 

  • Barhomi, Z., Djebali, W., Smaoui, A., Chaibi, W., & Abdelly, C. (2007). Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. Journal of Plant Physiology, 164, 842–850.

    Article  CAS  Google Scholar 

  • Barkla, B. J., & Vera-Estrella, R. (2015). Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum. Frontiers in Plant Science, 6, 435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barkla, B. J., Zingarelli, L., Blumwald, E., & Smith, J. A. C. (1995). Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiology, 109, 549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkla, B. J., Vera-Estrella, R., Camacho-Emiterio, J., & Pantoja, O. (2002). Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage. Functional Plant Biology, 29, 1017–1024.

    Article  CAS  PubMed  Google Scholar 

  • Barkla, B. J., Vera-Estrella, R., & Raymond, C. (2016). Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins. BMC Plant Biology, 16, 110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barkla, B. J., Rhodes, T., Tran, K. N. T., Wijesinghege, C., Larkin, J. C., & Dassanayake, M. (2018). Making epidermal bladder cells bigger: Developmental-and salinity-induced endopolyploidy in a model halophyte. Plant Physiology, 177, 615–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil, E., & Blumwald, E. (2014). The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Current Opinion in Plant Biology, 22, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Böhm, J., Messerer, M., Müller, H. M., Scholz-Starke, J., Gradogna, A., Scherzer, S., Maierhofer, T., Bazihizina, N., Zhang, H., Stigloher, C., Ache, P., Al-Rasheid, K. A. S., Mayer, K. F. X., Shabala, S., Carpaneto, A., Haberer, G., Zhu, J.-K., & Hedrich, R. (2018). Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa. Current Biology, 28, 3075–3085.

    Article  PubMed  CAS  Google Scholar 

  • Bonales-Alatorre, E., Pottosin, I., Shabala, L., Chen, Z. H., Zeng, F., Jacobsen, S. E., & Shabala, S. (2013a). Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa. International Journal of Molecular Sciences, 14, 9267–9285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonales-Alatorre, E., Shabala, S., Chen, Z. H., & Pottosin, I. (2013b). Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiology, 162, 940–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty, K., Bose, J., Shabala, L., Eyles, A., & Shabala, S. (2016). Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species. Physiologia Plantarum, 158, 135–151.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. A., Xiao, Q. A., Wu, F. H., Dong, X. J., He, J. X., Pei, Z. M., & Zheng, H. L. (2010). Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiology, 30, 1570–1585.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. F., Zhou, R. C., Huang, Y. L., Zhang, M., Yang, G. L., Zhong, C. R., & Shi, S. H. (2011). Transcriptome sequencing of a highly salt tolerant mangrove species Sonneratia alba using Illumina platform. Marine Genomics, 4, 129–136.

    Article  PubMed  Google Scholar 

  • Chiang, C. P., Yim, W. C., Sun, Y. H., Ohnishi, M., Mimura, T., Cushman, J. C., & Yen, H. E. (2016). Identification of ice plant (Mesembryanthemum crystallinum L.) microRNAs using RNA-Seq and their putative roles in high salinity responses in seedlings. Frontiers in Plant Science, 7, 1143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowrasia, S., Rawal, H. C., Mazumder, A., Gaikwad, K., Sharma, T. R., Singh, N. K., & Mondal, T. K. (2018). Oryza coarctata Roxb. In T. K. Mondal & R. J. Henry (Eds.), The Wild Oryza Genomes (pp. 87–104). Cham, Switzerland: Springer International Publishing.

    Google Scholar 

  • Dassanayake, M., & Larkin, J. C. (2017). Making plants break a sweat: The structure, function, and evolution of plant salt glands. Frontiers in Plant Science, 8, 406.

    PubMed  PubMed Central  Google Scholar 

  • de la Garma, J. G., Fernandez-Garcia, N., Bardisi, E., Pallol, B., Rubio-Asensio, J. S., Bru, R., & Olmos, E. (2015). New insights into plant salt acclimation: The roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytologist, 205, 216–239.

    Article  CAS  Google Scholar 

  • Deng, Y. Q., Feng, Z. T., Yuan, F., Guo, J. R., Suo, S. S., & Wang, B. S. (2015). Identification and functional analysis of the autofluorescent substance in Limonium bicolor salt glands. Plant Physiology and Biochemistry, 97, 20–27.

    Article  CAS  PubMed  Google Scholar 

  • Drennan, P. M., Berjak, P., Lawton, J. R., & Pammenter, N. W. (1987). Ultrastructure of the salt-glands of the mangrove, Avicennia Marina (Forssk) Vierh., as indicated by the use of selective membrane staining. Planta, 172, 176–183.

    Article  CAS  PubMed  Google Scholar 

  • Eshel, A., Waisel, Y., & Ramati, A. (1974). The role of sodium in stomatal movements of a halophyte: A study by X-ray microanalysis. In Proceedings of the seventh international colloquium of plant analysis and fertilizer problems. Hannover: German Society for Plant Nutrition.

    Google Scholar 

  • Esteban, R., Fernandez-Marin, B., Hernandez, A., Jimenez, E. T., Leon, A., Garcia-Maurino, S., Silva, C. D., Dolmus, J. R., Dolmus, C. M., Molina, M. J., Gutierrez, N. N., Loaisiga, M. I., Brito, P., & Garcia-Plazaola, J. I. (2013). Salt crystal deposition as a reversible mechanism to enhance photoprotection in black mangrove. Trees, 27, 229–237.

    Article  CAS  Google Scholar 

  • Feng, Z. T., Sun, Q. J., Deng, Y. Q., Sun, S. F., Zhang, J. G., & Wang, B. S. (2014). Study on pathway and characteristics of ion secretion of salt glands of Limonium bicolor. Acta Physiologiae Plantarum, 36, 2729–2741.

    Article  CAS  Google Scholar 

  • Feng, Z. T., Deng, Y. Q., Zhang, S. C., Liang, X., Yuan, F., Hao, J. L., Zhang, J. C., Sun, S. F., & Wang, B. S. (2015). K+ accumulation in the cytoplasm and nucleus of the salt gland cells of Limonium bicolor accompanies increased rates of salt secretion under NaCl treatment using NanoSIMS. Plant Science, 238, 286–296.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945–963.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T., Hajibagheri, M., Leach, R., Rogers, W., & Yeo. A. (1989). Salt tolerance in the halophyte Suaeda maritima. In Plant water relations and growth under stress. Proceedings of the Yamada Conference, Vol. XXII. Osaka.

    Google Scholar 

  • Flowers, T. J., Flowers, S. A., Hajibagheri, M. A., & Yeo, A. R. (1990). Salt tolerance in the halophytic wild rice, Porteresia-Coarctata Tateoka. New Phytologist, 114, 675–684.

    Article  CAS  Google Scholar 

  • Flowers, T. J., Glenn, E. P., & Volkov, V. (2019). Could vesicular transport of Na+ and Cl be a feature of salt tolerance in halophytes? Annals of Botany, 123, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, J. D., Dalmolin, A. C., Franca, M. G. C., & Mangabeira, P. A. O. (2017). Different salt concentrations induce alterations both in photosynthetic parameters and salt gland activity in leaves of the mangrove Avicennia schaueriana. Ecotoxicology and Environmental Safety, 141, 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Hedrich, R. (2012). Ion channels in plants. Physiological Reviews, 92, 1777–1811.

    Article  CAS  PubMed  Google Scholar 

  • Hedrich, R., & Shabala, S. (2018). Stomata in a saline world. Current Opinion in Plant Biology, 46, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Imada, S., Acharya, K., & Yamanaka, N. (2012). Short-term and diurnal patterns of salt secretion by Tamarix ramosissima and their relationships with climatic factors. Journal of Arid Environments, 83, 62–68.

    Article  Google Scholar 

  • Ivanova, T. V., Maiorova, O. V., Orlova, Y. V., Kuznetsova, E. I., Khalilova, L. A., Myasoedov, N. A., Balnokin, Y. V., & Tsydendambaev, V. D. (2016). Cell ultrastructure and fatty acid composition of lipids in vegetative organs of Chenopodium album L. under salt stress conditions. Russian Journal of Plant Physiology, 63, 763–775.

    Article  CAS  Google Scholar 

  • Jegadeeson, V., Kumari, K., Pulipati, S., Parida, A., & Venkataraman, G. (2019). Expression of wild rice Porteresia coarctata PcNHX1 antiporter gene (PcNHX1) in tobacco controlled by PcNHX1 promoter (PcNHX1p) confers Na+-specific hypocotyl elongation and stem-specific Na+ accumulation in transgenic tobacco. Plant Physiology and Biochemistry, 139, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Jou, Y., Wang, Y. L., & Yen, H. C. E. (2007). Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Functional Plant Biology, 34, 353–359.

    Article  CAS  PubMed  Google Scholar 

  • Jyothi-Prakash, P. A., Mohanty, B., Wijaya, E., Lim, T.-M., Lin, Q., Loh, C.-S., & Kumar, P. P. (2014). Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC Plant Biology, 14, 291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiani-Pouya, A., Roessner, U., Jayasinghe, N. S., Lutz, A., Rupasinghe, T., Bazihizina, N., Bohm, J., Alharbi, S., Hedrich, R., & Shabala, S. (2017). Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant, Cell & Environment, 40, 1900–1915.

    Article  CAS  Google Scholar 

  • Kiani-Pouya, A., Rasouli, F., Bazihizina, N., Zhang, H., Hedrich, R., & Shabala, S. (2019). A large-scale screening of quinoa accessions reveals an important role of epidermal bladder cells and stomatal patterning in salinity tolerance. Environmental and Experimental Botany, 168, 103885.

    Article  CAS  Google Scholar 

  • Kizhakkedath, P., Jegadeeson, V., Venkataraman, G., & Parida, A. (2015). A vacuolar antiporter is differentially regulated in leaves and roots of the halophytic wild rice Porteresia coarctata (Roxb.) Tateoka. Molecular Biology Reports, 42, 1091–1105.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, N., & Larkin, J. C. (2017). Why do plants need so many cyclin-dependent kinase inhibitors? Plant Signaling & Behavior, 12, e1282021.

    Article  CAS  Google Scholar 

  • Li, C., Wang, P., van der Ent, A., Cheng, M. M., Jiang, H. B., Read, T. L., Lombi, E., Tang, C. X., de Jonge, M. D., Menzies, N. W., & Kopittke, P. M. (2019). Absorption of foliar-applied Zn in sunflower (Helianthus annuus): Importance of the cuticle, stomata and trichomes. Annals of Botany, 123, 57–68.

    Article  CAS  PubMed  Google Scholar 

  • Liphschitz, N., & Waisel, Y. (1974). Existence of salt glands in various genera of the gramineae. New Phytologist, 73, 507–513.

    Article  Google Scholar 

  • Lu, Y. J., Li, N. Y., Sun, J., Hou, P. C., Jing, X. S., Zhu, H. P., Deng, S. R., Han, Y. S., Huang, X. X., Ma, X. J., Zhao, N., Zhang, Y. H., Shen, X., & Chen, S. L. (2013). Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. Tree Physiology, 33, 81–95.

    Article  PubMed  CAS  Google Scholar 

  • Mondal, T. K., Rawal, H. C., Chowrasia, S., Varshney, D., Panda, A. K., Mazumdar, A., Kaur, H., Gaikwad, K., Sharma, T. R., & Singh, N. K. (2018). Draft genome sequence of first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Scientific Reports, 8, 13698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munns, R., Passioura, J. B., Colmer, T. D., & Byrt, C. S. (2020). Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist, 225, 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  • Oh, D. H., Barkla, B. J., Vera-Estrella, R., Pantoja, O., Lee, S. Y., Bohnert, H. J., & Dassanayake, M. (2015). Cell type-specific responses to salinity – the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum. New Phytologist, 207, 627–644.

    Article  CAS  PubMed  Google Scholar 

  • Parida, A. K., & Jha, B. (2010). Salt tolerance mechanisms in mangroves: A review. Trees, 24, 199–217.

    Article  Google Scholar 

  • Parks, G. E., Dietrich, M. A., & Schumaker, K. S. (2002). Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl. Journal of Experimental Botany, 53, 1055–1065.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Z., He, S., Sun, J., Pan, Z., Gong, W., Lu, Y., & Du, X. (2016). Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Scientific Reports, 6, 34548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Percey, W. J., Shabala, L., Wu, Q., Su, N. N., Breadmore, M. C., Guijt, R. M., Bose, J., & Shabala, S. (2016). Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes. Plant Physiology and Biochemistry, 109, 346–354.

    Google Scholar 

  • Pérez, V., Wherrett, T., Shabala, S., Muñiz, J., Dobrovinskaya, O., & Pottosin, I. (2008). Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ. Journal of Experimental Botany, 59, 3845–3855.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajakani, R., Sellamuthu, G., Saravanakumar, V., Kannappan, S., Shabala, L., Meinke, H., Chen, Z. H., Zhou, M. X., Parida, A., Shabala, S., & Venkataraman, G. (2019). Microhair on the adaxial leaf surface of salt secreting halophytic Oryza coarctata Roxb. show distinct morphotypes: Isolation for molecular and functional analysis. Plant Science, 285, 248–257.

    Article  CAS  PubMed  Google Scholar 

  • Rohini, G., Mohit, V., Shashank, A., Rama, S., Manoj, M., & Mukesh, J. (2014). Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Research, 21, 69–84.

    Article  CAS  Google Scholar 

  • Sager, R., & Lee, J. Y. (2014). Plasmodesmata in integrated cell signalling: Insights from development and environmental signals and stresses. Journal of Experimental Botany, 65, 6337–6358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta, S., & Majumder, A. L. (2009). Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: A physiological and proteomic approach. Planta, 229, 911–929.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta, S., & Majumder, A. L. (2010). Porteresia coarctata (Roxb.) Tateoka, a wild rice: A potential model for studying salt-stress biology in rice. Plant, Cell & Environment, 33, 526–542.

    Article  CAS  Google Scholar 

  • Senthilkumar, P., Jithesh, M. N., Parani, M., Rajalakshmi, S., Praseetha, K., & Parida, A. (2005). Salt stress effects on the accumulation of vacuolar H+-ATPase subunit c transcripts in wild rice, Porteresia coarctata (Roxb.) Tateoka. Current Science, 89, 1386–1394.

    CAS  Google Scholar 

  • Shabala, S., & Mackay, A. (2011). Ion transport in halophytes. Advances in Botanical Research, 57, 151–199.

    Google Scholar 

  • Shabala, S., Bose, J., & Hedrich, R. (2014). Salt bladders: Do they matter? Trends in Plant Science, 19, 687–691.

    Article  CAS  PubMed  Google Scholar 

  • Shabala, S., Chen, G., Chen, Z. H., & Pottosin, I. (2020). The energy cost of the tonoplast futile sodium leak. New Phytologist, 225, 1105–1110.

    Article  PubMed  Google Scholar 

  • Sun, J., Dai, S. X., Wang, R. G., Chen, S. L., Li, N. Y., Zhou, X. Y., Lu, C. F., Shen, X., Zheng, X. J., Hu, Z. M., Zhang, Z. K., Song, J., & Xu, Y. (2009). Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiology, 29, 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y. L., Kong, X., Li, C., Liu, Y., & Ding, Z. (2015). Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions. PLoS One, 10, e0124032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan, W. K., Lin, Q. S., Lim, T. M., Kumar, P., & Loh, C. S. (2013). Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing saline environment. Plant, Cell & Environment, 36, 1410–1422.

    Article  CAS  Google Scholar 

  • Tan, W. K., Lim, T. K., Loh, C. S., Kumar, P., & Lin, Q. S. (2015). Proteomic characterisation of the salt gland-enriched tissues of the mangrove tree species Avicennia officinalis. PLoS One, 10, e0133386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari, V., Patel, M. K., Chaturvedi, A. K., Mishra, A., & Jha, B. (2019). Cloning and functional characterization of the Na+/H+ antiporter (NHX1) gene promoter from an extreme halophyte Salicornia brachiata. Gene, 683, 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Tran, D. Q., Konishi, A., Cushman, J. C., Morokuma, M., Toyota, M., & Agarie, S. (2019). Ion accumulation and expression of ion homeostasis-related genes associated with halophilism, NaCl-promoted growth in a halophyte Mesembryanthemum crystallinum L. Plant Production Science. https://doi.org/10.1080/1343943X.2019.1647788.

  • Wang, L., Ma, Y. K., Li, N. N., Zhang, W. B., Mao, H. P., & Lin, X. F. (2016). Isolation and characterization of a tonoplast Na+/H+ antiporter from the halophyte Nitraria sibirica. Biologia Plantarum, 60, 113–122.

    Article  CAS  Google Scholar 

  • Yang, Y., Yang, S., Li, J., Deng, Y., Zhang, Z., Xu, S., Guo, W., Zhong, C., Zhou, R., & Shi, S. (2015). Transcriptome analysis of the holly mangrove Acanthus ilicifolius and its terrestrial relative, Acanthus leucostachyus, provides insights into adaptation to intertidal zones. BMC Genomics, 16, 605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, F., Lyu, M. J. A., Leng, B. Y., Zheng, G. Y., Feng, Z. T., Li, P. H., Zhu, X. G., & Wang, B. S. (2015). Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation. Plant, Cell & Environment, 38, 1637–1657.

    Article  CAS  Google Scholar 

  • Yuan, F., Lyu, M. J. A., Leng, B. Y., Zhu, X. G., & Wang, B. S. (2016). The transcriptome of NaCl-treated Limonium bicolor leaves reveals the genes controlling salt secretion of salt gland. Plant Molecular Biology, 91, 241–256.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, F., Shabala, S., Maksimović, J. D., Maksimović, V., Bonales-Alatorre, E., Shabala, L., Yu, M., Zhang, G., & Živanović, B. D. (2018). Revealing mechanisms of salinity tissue tolerance in succulent halophytes: A case study for Carpobrotus rossi. Plant, Cell & Environment, 41, 2654–2667.

    Article  CAS  Google Scholar 

  • Zhang, W. D., Wang, P., Bao, Z., Ma, Q., Duan, L. J., Bao, A. K., Zhang, J. L., & Wang, S. M. (2017). SOS1, HKT1;5, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora. Frontiers in Plant Science, 8, 576.

    PubMed  PubMed Central  Google Scholar 

  • Zheng, Q., Liu, L., Liu, Z., Chen, J., & Zhao, G. (2009). Comparison of the response of ion distribution in the tissues and cells of the succulent plants Aloe vera and Salicornia europaea to saline stress. Journal of Plant Nutrition and Soil Science, 172, 875–883.

    Article  CAS  Google Scholar 

  • Zou, C. S., Chen, A. J., Xiao, L. H., Muller, H. M., Ache, P., Haberer, G., Zhang, M. L., Jia, W., Deng, P., Huang, R., Lang, D., Li, F., Zhan, D. L., Wu, X. Y., Zhang, H., Bohm, J., Liu, R. Y., Shabala, S., Hedrich, R., Zhu, J. K., & Zhang, H. (2017). A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Research, 27, 1327–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Shabala .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yun, P., Shabala, S. (2021). Ion Transport in Salt Glands and Bladders in Halophyte Species. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_76

Download citation

Publish with us

Policies and ethics