Skip to main content

Survival Strategies in Halophytes: Adaptation and Regulation

  • Reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Salinity stress is perceived as one of the major threats to agriculture as it can cause irreversible damage to some of the physiological and molecular processes such as photosynthesis, gene expression, protein folding, and cell signaling at any developmental stage of the plant. However, halophytes have evolved various structural, physiological, anatomical, and molecular modifications enabling them to carry out normal physiological and molecular processes even under hypersaline conditions and thus enabling their survival. Survival strategies of halophytes began right from the step of germination by adopting dimorphic seeds until the seed dispersal through vivipary means. Some coastal halophytes such as mangroves modify by developing pneumatophores root for aeration, buttress, knee, and slit root for anchoring firmly in the sandy soil. Additionally, accumulation of stress-responsive proteins, metabolites, organic compounds, expression of stress-responsive genes, and tight regulation of physiological functions such as photosynthesis, ion homeostasis, and ROS regulation have been reported in halophytes conferring to its adaptation. Understanding this adaptability mechanism of halophytes can provide a valuable genetic resource for improving salt tolerance in glycophytes. Additionally, delineating the suite of genes regulating tolerance mechanism of halophytes under saline conditions using various omics approaches can be extremely useful in designing food crops to feed the burgeoning population under extreme climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, B. J., Kurihara, M., White, M. D., Moridis, G. J., Wilson, S. J., Pooladi-Darvish, M., & Narita, H. (2011). Regional long-term production modeling from a single well test, mount Elbert gas hydrate stratigraphic test well, Alaska north slope. Marine and Petroleum Geology, 28(2), 493–501.

    Article  Google Scholar 

  • Baisakh, N., RamanaRao, M. V., Rajasekaran, K., Subudhi, P., Janda, J., Galbraith, D., Vanier, C., & Pereira, A. (2012). Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel. Plant Biotechnology Journal, 10(4), 453–464.

    Article  CAS  PubMed  Google Scholar 

  • Bazihizina, N., Colmer, T. D., Cuin, T. A., Mancuso, S., & Shabala, S. (2019). Friend or foe? Chloride patterning in halophytes. Trends in Plant Science, 24(2), 142–151.

    Article  CAS  PubMed  Google Scholar 

  • Ben Hassine, A., Ghanem, M. E., Bouzid, S., & Lutts, S. (2009). Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus. Annals of Botany, 104(5), 925–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhm, J., Messerer, M., Müller, H. M., Scholz-Starke, J., Gradogna, A., Scherzer, S., Maierhofer, T., Bazihizina, N., Zhang, H., Stigloher, C., & Ache, P. (2018). Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa. Current Biology, 28(19), 3075–3085.

    Article  PubMed  CAS  Google Scholar 

  • Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. The Plant Cell, 7(7), 1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose, J., Rodrigo-Moreno, A., & Shabala S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65, 1241–1257.

    Google Scholar 

  • Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., & Tyerman, S. D. (2017a). Chloroplast function and ion regulation in plants growing on saline soils: Lessons from halophytes. Journal of Experimental Botany, 68(12), 3129–3143.

    Article  CAS  PubMed  Google Scholar 

  • Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2017b). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241–1257.

    Article  CAS  Google Scholar 

  • Bueno, M., & Cordovilla, M. P. (2019). Polyamines in halophytes. Frontiers in Plant Science, 10, 439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman, R. L., & Buchheim, M. A. (1992). Green algae and the evolution of land plants: Inferences from nuclear-encoded rRNA gene sequences. Biosystems, 28(1–3), 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Chuong, S. D., Franceschi, V. R., & Edwards, G. E. (2006). The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species. The Plant Cell, 18(9), 2207–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte, B., Santos, D., Marques, J. C., & Caçador, I. (2013). Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and anti-oxidant feedback–implications for resilience in climate change. Plant Physiology and Biochemistry, 67, 178–188.

    Article  CAS  PubMed  Google Scholar 

  • Fahad, S., Hussain, S., Matloob, A., Khan, F. A., Khaliq, A., Saud, S., Hassan, S., Shan, D., Khan, F., Ullah, N., & Faiq, M. (2015). Phytohormones and plant responses to salinity stress: A review. Plant Growth Regulation, 75(2), 391–404.

    Article  CAS  Google Scholar 

  • Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55(396), 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. The New Phytologist, 179(4), 945–963.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37(7), 604–612.

    Article  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, A., Pareek, A., Sopory, S. K., & Singla-Pareek, S. L. (2014). A glutathione responsive rice glyoxalase II, Os GLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. The Plant Journal, 80(1), 93–105.

    Article  CAS  PubMed  Google Scholar 

  • Gil, L., Pinya, S., Tejada, S., Capó, X., & Sureda, A. (2019). Antioxidant defenses in wild growing halophyte Crithmum maritimum from inland and coastline populations. Chemistry & Biodiversity, 16(1), e1800448.

    Article  CAS  Google Scholar 

  • Grigore, M. N., Neagu, M. T. B., & Meana, V. Ó. (2011). Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. The European Journal of Plant Science and Biotechnology, 5, 12–19.

    Google Scholar 

  • Hedrich, R., & Shabala, S. (2018). Stomata in a saline world. Current Opinion in Plant Biology, 46, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, R., Mangu, V. R., Bedre, R., Sanchez, L., Pilcher, W., Zandkarimi, H., & Baisakh, N. (2015). Salt adaptation mechanisms of halophytes: Improvement of salt tolerance in crop plants. In Elucidation of abiotic stress signaling in plants (pp. 243–279). New York: Springer.

    Chapter  Google Scholar 

  • Khan, M. A., & Gul, B. (1998). High salt tolerance in germinating dimorphic seeds of Arthrocne mumindicum. International Journal of Plant Sciences, 159(5), 826–832.

    Article  Google Scholar 

  • Khan, M. A., Ungar, I. A., & Showalter, A. M. (2000). Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Annals of Botany, 85(2), 225–232.

    Article  CAS  Google Scholar 

  • Kiani-Pouya, A., Rasouli, F., Rabbi, B., Falakboland, Z., Yong, M., Chen, Z. H., Zhou, M., & Shabala, S. (2020). Stomatal traits as a determinant of superior salinity tolerance in wild barley. Journal of Plant Physiology, 245, 153108.

    Article  CAS  PubMed  Google Scholar 

  • Koyro, H. W., Khan, M. A., & Lieth, H. (2011). Halophytic crops: A resource for the future to reduce the water crisis? Emirates Journal of Food and Agriculture, 23(1), 1–16.

    Article  Google Scholar 

  • Kumari, S., nee Sabharwal, V. P., Kushwaha, H. R., Sopory, S. K., Singla-Pareek, S. L., & Pareek, A. (2009). Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Functional & Integrative Genomics, 9(1), 109.

    Article  CAS  Google Scholar 

  • Lakra, N., Kaur, C., Anwar, K., Singla-Pareek, S. L., & Pareek, A. (2018). Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment. Plant, Cell & Environment, 41(5), 947–469.

    Article  CAS  Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2011). Halophytes—An emerging trend in phytoremediation. International Journal of Phytoremediation, 13(10), 959–969.

    Article  CAS  PubMed  Google Scholar 

  • Matinzadeh, Z., Akhani, H., Abedi, M., & Palacio, S. (2019). The elemental composition of halophytes correlates with key morphological adaptations and taxonomic groups. Plant Physiology and Biochemistry, 141, 259–278.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G. A. D., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453–467.

    Article  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Breusegem, F. V. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490–498.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Niinemets, U. (2007). Photosynthesis and resource distribution through plant canopies. Plant, Cell & Environment, 30(9), 1052–1071.

    Article  CAS  Google Scholar 

  • Nikalje, G. C., Nikam, T. D., & Suprasanna, P. (2017). Looking at halophytic adaptation to high salinity through genomics landscape. Current Genomics, 18(6), 542–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nublat, A., Desplans, J., Casse, F., & Berthomieu, P. (2001). sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. The Plant Cell, 13(1), 125–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, D. H., Barkla, B. J., Vera-Estrella, R., Pantoja, O., Lee, S. Y., Bohnert, H. J., & Dassanayake, M. (2015). Cell type-specific responses to salinity–the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum. The New Phytologist, 207(3), 627–644.

    Article  CAS  PubMed  Google Scholar 

  • Pareek, A., Sopory, S. K., Bohnert, H. J. & Govindjee. (2009). Abiotic stress adaptation in plants. New York: Springer.

    Google Scholar 

  • Perera, L. K., Mansfield, T. A., & Malloch, A. J. (1994). Stomatal responses to sodium ions in Aster tripolium: A new hypothesis to explain salinity regulation in above-ground tissues. Plant, Cell & Environment, 17(3), 335–340.

    Article  CAS  Google Scholar 

  • Purnobasuki, H., & Suzuki, M. (2005). Functional anatomy of air conducting network on the pneumatophores of a mangrove plant, Avicennia marina (Forsk.) Vierh. Asian Journal of Plant Sciences, 4(4), 334–347.

    Article  Google Scholar 

  • Qin, Y., Druzhinina, I. S., Pan, X., & Yuan, Z. (2016). Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances, 34(7), 1245–1259.

    Article  CAS  PubMed  Google Scholar 

  • Reinoso, H., Sosa, L., Ramírez, L., & Luna, V. (2004). Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Canadian Journal of Botany, 82(5), 618–628.

    Article  Google Scholar 

  • Rigó, G., Valkai, I., Faragó, D., Kiss, E., Van Houdt, S., Van de Steene, N., Hannah, M. A., & Szabados, L. (2016). Gene mining in halophytes: Functional identification of stress tolerance genes in Lepidium crassifolium. Plant, Cell & Environment, 39(9), 2074–2084.

    Article  CAS  Google Scholar 

  • Sabovljevic, M., & Sabovljevic, A. (2007). Contribution to the coastal bryophytes of the northern Mediterranean: Are there halophytes among bryophytes. Phytologia, 13(2), 131–135.

    Google Scholar 

  • Sengupta, S., & Majumder, A. L. (2009). Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: A physiological and proteomic approach. Planta, 229(4), 911–929.

    Article  CAS  PubMed  Google Scholar 

  • Shabala, S. (2013). Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112(7), 1209–1221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabala, S., & Mackay, A. (2011). Ion transport in halophytes. Advances in Botanical Research, 57, 151–199.

    Article  CAS  Google Scholar 

  • Shabala, S., Bose, J., & Hedrich, R. (2014). Salt bladders: Do they matter? Trends in Plant Science, 19(11), 687–691.

    Article  CAS  PubMed  Google Scholar 

  • Shabala, S., Chen, G., Chen, Z.H., & Pottosin, I. (2019). The energy cost of the tonoplast futile sodium leak. The New Phytologist. https://doi.org/10.1111/nph.15758.

  • Sharma, R., Wungrampha, S., Singh, V., Pareek, A., & Sharma, M. K. (2016). Halophytes as bioenergy crops. Frontiers in Plant Science, 7, 1372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savoure, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soda, N., Sharan, A., Gupta, B. K., Singla-Pareek, S. L., & Pareek, A. (2016). Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Scientific Reports, 6, 34762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J., & Wang, B. (2015). Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Annals of Botany, 115(3), 541–553.

    Article  CAS  PubMed  Google Scholar 

  • Vega, A. S., & de Agrasar, Z. R. (2006). Vivipary and pseudovivipary in the Poaceae, including the first record of pseudovivipary in Digitaria (Panicoideae: Paniceae). South African Journal of Botany, 72(4), 559–564.

    Article  Google Scholar 

  • Ventura, Y., & Sagi, M. (2013). Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144–153.

    Article  Google Scholar 

  • Wang, J., & Huang, R. (2019). Modulation of ethylene and ascorbic acid on reactive oxygen species scavenging in plant salt response. Frontiers in Plant Science, 10, 319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Yan, Z., You, S., Zhang, Y., Chen, L., & Lin, G. (2011). Mangroves: Obligate or facultative halophytes? A review. Trees, 25(6), 953–963.

    Article  CAS  Google Scholar 

  • Wungrampha, S., Joshi, R., Singla-Pareek, S. L., & Pareek, A. (2018). Photosynthesis and salinity: Are these mutually exclusive? Photosynthetica, 56(1), 366–381.

    Article  CAS  Google Scholar 

  • Wungrampha, S., Joshi, R., Rathore, R. S., Singla-Pareek, S. L., Govindjee., & Pareek, A. (2019a). CO2 uptake and chlorophyll a fluorescence of Suaeda fruticosa grown under diurnal rhythm and after transfer to continuous dark. Photosynthesis Research, 142(2), 211–227, 1–17.

    Google Scholar 

  • Wungrampha, S., Joshi, R., Singla-Pareek, S. L., & Pareek, A. (2019b). How to survive in a salty desert: An adventure study with Suaeda fruticosa. Journal of Plant Science and Research, 35(2), 257–261.

    Article  Google Scholar 

  • Xu, C., Tang, X., Shao, H., & Wang, H. (2016). Salinity tolerance mechanism of economic halophytes from physiological to molecular hierarchy for improving food quality. Current Genomics, 17(3), 207–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, F., Chen, M., Leng, B. Y., & Wang, B. S. (2013). An efficient autofluorescence method for screening Limonium bicolor mutants for abnormal salt gland density and salt secretion. South African Journal of Botany, 88, 110–117.

    Article  CAS  Google Scholar 

  • Yuan, F., Leng, B., & Wang, B. (2016). Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt? Frontiers in Plant Science, 7, 977.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, F., Guo, J., Shabala, S., & Wang, B. (2018). Reproductive physiology of halophytes: Current standing. Frontiers in Plant Science, 9, 1954.

    Article  PubMed  Google Scholar 

  • Zeng, F., Shabala, S., Maksimović, J. D., Maksimović, V., Bonales-Alatorre, E., Shabala, L., Yu, M., Zhang, G., & Živanović, B. D. (2018). Revealing mechanisms of salinity tissue tolerance in succulent halophytes: A case study for Carpobrotus rossi. Plant, Cell & Environment, 41(11), 2654–2667.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SW and NR acknowledge UGC (University Grants Commission, Government of India) and the Department of Biotechnology (DBT) for providing fellowship during their research work. Research in the Lab of AP is supported by funding from the Indo-US Science and Technology Forum (IUSSTF) for Indo-US Advanced Bioenergy Consortium (IUABC), and UPOE-II, Jawaharlal Nehru University, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Pareek .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wungrampha, S., Rawat, N., Singla-Pareek, S.L., Pareek, A. (2021). Survival Strategies in Halophytes: Adaptation and Regulation. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_56

Download citation

Publish with us

Policies and ethics