Skip to main content

Salinity-Induced Changes in Growth Attributes, Water Relation, and Ion Flux of Subtropical Halophytes

  • Reference work entry
  • First Online:
Handbook of Halophytes
  • 56 Accesses

Abstract

Although halophytes could grow in a variety of habitats with extreme temperatures and highly variable saline conditions, this chapter explains growth dynamics of subtropical halophytes growing near inland and coastal areas of Karachi. Growth and ecophysiological parameters are discussed in this review which will provide an insight for domestication of the halophytes using saline resources considering their presence in heterogeneous habitats (such as dunes, marshes, salt flats, etc.). Studies suggest that most of the grasses grow best under nonsaline control and reduce their growth under saline conditions, while most of the dicots of dry saline habitats (belonging to the salt includer class) and wetland trees (mangroves) optimize their growth under moderate salinities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abogadallah, G. M. (2010). Sensitivity of Trifolium alexandrinum L. to salt stress is related to the lack of long-term stress-induced gene expression. Plant Science, 178, 491–500. https://doi.org/10.1016/j.plantsci.2010.03.008.

    Article  CAS  Google Scholar 

  • Adam, P. (1993). Saltmarsh ecology. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Adnan, M. Y., Hussain, T., Ahmed, M. Z., Gul, B., Khan, M. A., & Nielsen, B. L. Growth regulation of Desmostachya bipinnata by organ-specific biomass, water relations, and ion allocation responses to improve salt resistance. (Unpublished)

    Google Scholar 

  • Ahmed, M. Z., Hussain, T., Adnan,M. Y., Gulzar, S., & Khan,M. A. Calcium improves the leaf physiology of salt treated Limonium stocksii: A floriculture crop. (Unpublished)

    Google Scholar 

  • Ahmed, M. Z., Shimazaki, T., Gulzar, S., Kikuchi, A., Gul, B., Khan, M. A., Koyro, H. W., Huchzermeyer, B., & Watanabe, K. N. (2013). The influence of genes regulating transmembrane transport of Na+ on the salt resistance of Aeluropus lagopoides. Functional Plant Biology, 40, 860–871. https://doi.org/10.1071/FP12346.

    Article  CAS  PubMed  Google Scholar 

  • Asrar, H., Hussaina, T., Qasim, M., Nielsen, B. L., Gul, B., & Khan, M. A. (2020). Salt induced modulations in antioxidative defense system of Desmostachya bipinnata. Plant Physiology and Biochemistry, 147, 113–124. https://doi.org/10.1016/j.plaphy.2019.12.012.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, I., & Khan, M. A. (2001a). Effect of seawater on the growth, ion content and water potential of Rhizophora mucronata Lam. Journal of Plant Research, 14, 369–373.

    Article  Google Scholar 

  • Aziz, I., & Khan, M. A. (2001b). Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquatic Botany, 70, 259–268.

    Article  CAS  Google Scholar 

  • Aziz, I., & Khan, F. (2014). Distribution, ecology & ecophysiology of mangroves in Pakistan. In M. A. Khan, B. Böer, M. Öztürk, T. Z. Al Abdessalaam, M. Clüsener-Godt, & B. Gul (Eds.), Sabkha ecosystems. Vol. IV: Cash Crop halophyte & biodiversity conservation (pp. 55–66). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12, 431–434. https://doi.org/10.1016/S0955-0674(00)00112-5.

    Article  CAS  PubMed  Google Scholar 

  • Bose, J., Rodrigo-Moreno, A., Lai, D., Xie, Y., Shen, W., & Shabala, S. (2015). Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Annals of Botany, 115, 481–494. https://doi.org/10.1093/aob/mcu219.

    Article  PubMed  Google Scholar 

  • Chen, T. H., & Murata, N. (2008). Glycinebetaine: An effective protectant against abiotic stress in plants. Trends in Plant Science, 3, 499–505.

    Article  Google Scholar 

  • Cosentino, C., Fischer-Schliebs, E., Bertl, A., Thiel, G., & Homann, U. (2010). Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum. New Phytologist, 186, 669–680. https://doi.org/10.1111/j.1469-8137.2010.03208.x.

    Article  CAS  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945–963.

    Article  CAS  Google Scholar 

  • Flowers, T. J., Munns, R., & Colmer, T. D. (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 115, 419–431. https://doi.org/10.1093/aob/mcu217.

    Article  CAS  PubMed  Google Scholar 

  • Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40, 805–818.

    Article  CAS  Google Scholar 

  • Gul, B., Abideen, Z., Ansari, R., & Khan, M. A. (2013). Halophytic biofuels revisited. Biofuels, 4(6), 575–577.

    Article  CAS  Google Scholar 

  • Gulzar, S., & Khan, M. A. (2006). Comparative salt tolerance of perennial grasses. In M. A. Khan & D. J. Weber (Eds.), Ecophysiology of high salinity tolerant plants (pp. 239–253). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gulzar, S., Khan, M. A., Ungar, I. A., & Liu, X. (2005). The effect of NaCl on the growth, ionic and water relations of Sporobolus ioclados. Pakistan Journal of Botany, 37, 119–130.

    Google Scholar 

  • Hoffmann, W. A., & Poorter, H. (2002). Avoiding bias in calculations of relative growth rate. Annals of Botany, 90, 37–42.

    Article  Google Scholar 

  • Hussain, T., Koyro, H. W., Huchzermeyer, B., & Khan, M. A. (2015). Eco-physiological adaptations of Panicum antidotale to hyperosmotic salinity: Water and ion relations and anti-oxidant feedback. Flora-Morphology, Distribution, Functional Ecology of Plants, 212, 30–37.

    Article  Google Scholar 

  • Khan, F. Salt induced physiological and biochemical responses in mangroves (PhD dissertation, Institute of Sustainable Halophyte Utilization, University of Karachi). (Unpublished)

    Google Scholar 

  • Khan, M. A., & Aziz, S. (1998). Some aspects of salinity, plant density, and nutrient effects on Cressa cretica L. Journal of Plant Nutrition, 21, 769–784.

    Article  CAS  Google Scholar 

  • Khan, M. A., & Qaiser, M. (2006). Halophytes of Pakistan: Characteristics distribution and potential economic usages. In M. A. Khan, B. Boer, G. S. Kust, & H. J. Barth (Eds.), Sabkha ecosystems. Vol. 2 (pp. 129–153). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Khan, M. A., Ungar, I. A., & Showalter, A. M. (1999). Effects of salinity on growth, ion content, and osmotic relations in Halopyrum mucronatum (L.) Stapf. Journal of Plant Nutrition, 22, 191–204.

    Article  CAS  Google Scholar 

  • Khan, M. A., Ungar, I. A., & Showalter, A. M. (2000a). Salt tolerance in the subtropical perennial halophyte Atriplex griffithii Moq. var. stocksii Boiss. Annals of Botany, 85, 225–232.

    Article  CAS  Google Scholar 

  • Khan, M. A., Ungar, I. A., & Showalter, A. M. (2000b). The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. Journal of Arid Environments, 45, 73–84.

    Article  Google Scholar 

  • Khan, M. A., Ungar, I. A., & Showalter, A. M. (2000c). Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Communications in Soil Science and Plant Analysis, 31, 2763–2774.

    Article  CAS  Google Scholar 

  • Khan, M. A., Ungar, I. A., & Showalter, A. M. (2005). Salt stimulation and tolerance in inter-tidal stem-succulent halophyte. Journal of Plant Nutrition, 28, 1365–1374.

    Article  CAS  Google Scholar 

  • Khan, F., Adnan, M. Y., & Aziz, I. (2016). Metabolic implications of salt induced osmolyte accumulation in Avicennia marina. Pakistan Journal of Botany, 48(1), 29–36.

    CAS  Google Scholar 

  • Lee, G., Duncan, R. R., & Carrow, R. N. (2004). Salinity tolerance of seashore Paspalum ecotypes: Shoot growth responses and criteria. Horticultural Science, 39, 1138–1142.

    Google Scholar 

  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139–158. https://doi.org/10.1016/j.abb.2005.10.018.

    Article  CAS  PubMed  Google Scholar 

  • Maimaiti, A., Iwanaga, F., Taniguchi, T., Hara, N., Matsuo, N., Mori, N., Yunus, Q., & Yamanaka, N. (2016). Inorganic and organic osmolytes accumulation in five halophytes growing in saline habitats around the aiding lake area in Turpan Basin, Northwest China. Arid Land Research and Management, 30, 421–431. https://doi.org/10.1080/15324982.2016.1148799.

    Article  CAS  Google Scholar 

  • Marcum, K. B. (2008). Relative salinity tolerance of turfgrass species and cultivars. In M. Pessarakli (Ed.), Handbook of turfgrass management and physiology (pp. 389–406). New York: CRC Press.

    Google Scholar 

  • Marcum, K. B., & Murdoch, C. (1992). Salt tolerance of the coastal salt marsh grass, Sporobolus virginicus (L.) Kunth. New Phytologist, 120, 281–288.

    Article  CAS  Google Scholar 

  • Marcum, K. B., & Murdoch, C. L. (1994). Salinity tolerance mechanisms of six C4 turfgrasses. Journal of the American Society for Horticultural Science, 119, 779–784.

    Article  CAS  Google Scholar 

  • Moinuddin, M., Gulzar, S., Ahmed, M. Z., Gul, B., Koyro, H. W., & Khan, M. A. (2014). Excreting and non-excreting grasses exhibit different salt resistance strategies. AoB Plants, 6, plu038. https://doi.org/10.1093/aobpla/plu038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  • Munns, R., Day, D. A., Fricke, W., Watt, M., Arsova, B., Barkla, B. J., Bose, J., Byrt, C. S., & Tyerman, S. D. (2019). Energy costs of salt tolerance in crop plants. New Phytologist, 225(3), 1072–1090. https://doi.org/10.1111/nph.15864.

    Article  CAS  Google Scholar 

  • Raven, J. A. (1985). Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist, 101, 25–77.

    Article  CAS  Google Scholar 

  • Saman Ehsen, Zainul Abideen, Rabab Fatima Rizvi, Salman Gulzar, Irfan Aziz, Bilquees Gul, M. Ajmal Khan, Raziuddin Ansari, (2019) Ecophysiological adaptations and anti-nutritive status of sustainable cattle feed Haloxylon stocksii under saline conditions. Flora 257:151425

    Google Scholar 

  • Shabala, S., & Mackay, A. (2011). Ion transport in halophytes. Advances in Botanical Research, 57, 151–199. https://doi.org/10.1016/B978-0-12-387692-8.00005-9.

    Article  CAS  Google Scholar 

  • Shoukat, E., Aziz, I., Ahmed, M. Z., & Abideen, Z. (2018). Growth patterns of Phragmites karka under saline conditions depend on the bulk elastic modulus. Crop & Pasture Science, 69(5), 535–545. https://doi.org/10.1071/CP17195.

    Article  CAS  Google Scholar 

  • Shoukat, E., Ahmed, M. Z., Abideen, Z., Azeem, M., Ibrahim, M., Gul, B., & Khan, M. A. (2020). Short and long term salinity induced differences in growth and tissue specific ion regulation of Phragmites karka. Flora, 263, 151–550.

    Article  Google Scholar 

  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527. https://doi.org/10.1093/aob/mcg058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkov, V., & Flowers, T. J. (2019). Mechanisms of ion transport in halophytes: From roots to leaves. In B. Gul, B. Böer, M. Khan, M. Clüsener-Godt, & A. Hameed (Eds.), Sabkha ecosystems. Vol. 49. Tasks for vegetation science (pp. 125–150). Cham: Springer. https://doi.org/10.1007/978-3-030-04417-6_10.

    Chapter  Google Scholar 

  • Wang, C. M., Zhang, J. L., Liu, X. S., Li, Z., Wu, G. Q., Cai, J. Y., Flowers, T. J., & Wang, S. M. (2009). Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant, Cell and Environment, 32, 486–496.

    Article  CAS  Google Scholar 

  • Wang, W., Yan, Z., You, S., Zhang, Y., Chen, L., & Lin, G. (2011). Mangroves: Obligate or facultative halophytes? A review. Trees, 25, 953–963. https://doi.org/10.1007/s00468-011-0570-x.

    Article  CAS  Google Scholar 

  • Zhou, Q., & Yu, B. (2009). Accumulation of inorganic and organic osmolytes and their role in osmotic adjustment in NaCl-stressed vetiver grass seedlings. Russian Journal of Plant Physiology, 56, 678–685.

    Google Scholar 

  • Zia, S., Egan, T., & Khan, M. A. (2008). Growth and selective ion transport of Limonium stocksii under saline conditions. Pakistan Journal of Botany, 40, 697–709.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zaheer Ahmed .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahmed, M.Z., Abideen, Z., Aziz, I., Gul, B. (2021). Salinity-Induced Changes in Growth Attributes, Water Relation, and Ion Flux of Subtropical Halophytes. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_51

Download citation

Publish with us

Policies and ethics