Skip to main content

Advertisement

Log in

Halophytes can salinize soil when competing with glycophytes, intensifying effects of sea level rise in coastal communities

  • Global change ecology - original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Sea level rise (SLR) and land-use change are working together to change coastal communities around the world. Along Florida’s coast, SLR and large-scale drying are increasing groundwater salinity, resulting in halophytic (salt-tolerant) species colonizing glycophytic (salt-intolerant) communities. We hypothesized that halophytes can contribute to increased soil salinity as they move into glycophyte communities, making soils more saline than SLR or drying alone. We tested our hypothesis with a replacement-series greenhouse experiment with halophyte/glycophyte ratios of 0:4, 1:3, 2:2, 3:1, 4:0, mimicking halophyte movement into glycophyte communities. We subjected replicates to 0, 26, and 38‰ salinity for one, one, and three months, respectively, taking soil salinity and stomatal conductance measurements at the end of each treatment period. Our results showed that soil salinity increased as halophyte/glycophyte ratio increased. Either osmotic or ionic stress caused decreases in glycophyte biomass, resulting in less per-plant transpiration as compared to halophytes. At 38‰ groundwater, soil salinity increased as halophyte density increased, making conditions more conducive to further halophyte establishment. This study suggests that coastal plant community turnover may occur faster than would be predicted from SLR and anthropogenic disturbance alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badaruddin S, Werner AD, Morgan LK (2015) Water table salinization due to seawater intrusion. Water Resour Res 51:9127–9140. doi:10.1002/2015WR017098

    Article  Google Scholar 

  • Barr JG, Engel V, Fuentes JD et al (2010) Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. J Geophys Res 115:1–14. doi:10.1029/2009JG001186

    Article  Google Scholar 

  • Bertness MD (2006) Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience 56:211–218

    Article  Google Scholar 

  • Comprehensive Everglades Restoration Plan (2010) Comprehensive Everglades restoration plan: central and southern Florida project 2010 report to congress. Washing

  • da Silveira Sternberg, Lobo L, Koenraad Swart P (1987) Utilization of freshwater and ocean water by coastal plants of Southern Florida. Source Ecol 68:1898–1905

    Google Scholar 

  • Davis SM, Childers DL, Lorenz JJ et al (2005) A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands 25:832–842. doi:10.1672/0277-5212(2005)025[0832:acmoei]2.0.co;2

  • Duarte CM, Losada IJ, Hendriks IE et al (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:961–968. doi:10.1038/nclimate1970

    Article  CAS  Google Scholar 

  • FCE Core Research Data (2017) Florida coastal everglades long-term ecological research program (cited 26 June 2017). http://fcelter.fiu.edu/data/core/

  • Fitterman DV, Deszcz-Pan M, Stoddard CE (1999) Results of time-domain electromagnetic soundings in Everglades National Park, Florida, p 24

  • Florida Climate Center (FCC) (2015) Florida Climate Data. In: Clim. Data. http://climatecenter.fsu.edu/climate-data-access-tools/climate-data-visualization. Accessed 12 Feb 2016

  • Florida Natural Areas Inventory (FNAI) (2010a) Buttonwood Forest. In: Guid. to Nat. communities Florida 2010 Ed. http://www.fnai.org/natcom_accounts.cfm. Accessed 12 Nov 2015

  • Florida Natural Areas Inventory (FNAI) (2010b) Salt Marsh. In: Guid. to Nat. communities Florida 2010 Ed. http://fnai.org/PDF/NC/Salt_Marsh_Final_2010.pdf. Accessed 12 Oct 2015

  • Harter T, Hopmans JW, Feddes RA et al (2004) Role of vadose-zone flow processes in regional-scale hydrology: review, opportunities and challenges. Unsaturated-Zone Model Progress. Challenges Appl 6:179–208

    Google Scholar 

  • Hastings A, Byers JE, Crooks JA et al (2007) Ecosystem engineering in space and time. Ecol Lett 10:153–164. doi:10.1111/j.1461-0248.2006.00997.x

    Article  PubMed  Google Scholar 

  • Heuperman A (1999) Hydraulic gradient reversal by trees in shallow water table areas and repercussions for the sustainability of tree-growing systems. Agric Water Manag 39:153–167. doi:10.1016/S0378-3774(98)00076-6

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2014) Climate change 2014 synthesis report summary chapter for policymakers

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. 69:373–386

  • Kaplan D, Munoz-Carpena R, Ritter A (2010) Untangling complex shallow groundwater dynamics in the floodplain wetlands of a southeastern U.S. coastal river. Water Resour Res 46:1–18. doi:10.1029/2009WR009038

    Article  Google Scholar 

  • Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:53–60. doi:10.1038/nature12856

    Article  CAS  PubMed  Google Scholar 

  • Kirwan ML, Murray AB, Boyd WS (2008) Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophys Res Lett 35:1–5. doi:10.1029/2007GL032681

    Google Scholar 

  • Kozlowski TT (1984) Responses of woody plants to flooding. Flood Plant Growth. doi:10.1016/B978-0-12-424120-6.50009-2

    Google Scholar 

  • Kuramoto RT, Brest DE (1979) Physiological response to salinity by four salt marsh plants. Int J Plant Sci 140:295–298

    Google Scholar 

  • Langley JA, McKee KL, Cahoon DR et al (2009) Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc Natl Acad Sci USA 106:6182–6186. doi:10.1073/pnas.0807695106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenth R (2014) lsmeans: least-squares means

  • LI-COR (1989) Li-1600 stead state porometer instruction manual. Publication No. 8210-0030. Lincoln, Nebraska

  • McLeod E, Chmura GL, Bouillon S et al (2011) A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. doi:10.1890/110004

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Nagelkerken I, Sheaves M, Baker R, Connolly RM (2015) The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish 16:362–371. doi:10.1111/faf.12057

    Article  Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. doi:10.1126/science.1185782

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Yuan Z, Zhang Y et al (2005) Photosynthetic responses of C3 and C4 species to seasonal water variability and competition. J Exp Bot 56:2867–2876. doi:10.1093/jxb/eri281

    Article  CAS  PubMed  Google Scholar 

  • Nosetto MD, Jobbágy EG, Tóth T, Di Bella CM (2007) The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia 152:695–705. doi:10.1007/s00442-007-0694-2

    Article  PubMed  Google Scholar 

  • Nosetto MD, Jobbagy EG, Toth T, Jackson RB (2008) Regional patterns and controls of ecosystem salinization with grassland afforestation along a rainfall gradient. Global Biogeochem Cycles 22:1–12. doi:10.1029/2007GB003000

    Article  Google Scholar 

  • Odum WE (1988) Comparative ecology of tidal freshwater and salt marshes. Annu Rev Ecol Syst 19:147–176

    Article  Google Scholar 

  • Olmsted IC, Loope LL (1980) Vegetation along a microtopographic gradient in the estuarines of Everglades National Park. Florida, Homestead

    Google Scholar 

  • Olmsted IC, Loope LL (1981) Vegetation of the southern coastal region of Everglades National Park between Flamingo and Joe Bay. Report T-620. Homestead, FL

  • Parker BGG, Ferguson GE, Love SK (1955) Water Resources of Southeastern Florida with special reference to the geology and ground water of the Miami area

  • Pinheiro J, Bates D, DebRoy S et al (2013) nlme: linear and nonlinear mixed effects models

  • Price RM, Swart PK, Fourqurean JW (2006) Coastal groundwater discharge—an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569:23–36. doi:10.1007/s10750-006-0120-5

    Article  CAS  Google Scholar 

  • Qadir M, Oster JD, Schubert S et al (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247. doi:10.1016/S0065-2113(07)96006-X

    Article  CAS  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (1992) Biology of plants, Fifth. Worth Publishers, New York

    Google Scholar 

  • Rhoades JD (1996) Salinity: Electrical conductivity and total dissolved solids. In: SSSA Book Series:5 Methods of soil analsysi Part 3-Chemical Methods. Soil Science of America, Inc, Madison, Wisconsin

  • Ross MS, O’Brien JJ, da Silveira Lobo Sternberg L (1994) Sea-level rise and the reduction in pine forests in the Florida Keys. Ecol Appl 4:144–156. doi:10.2307/1942124

    Article  Google Scholar 

  • Ross MS, Meeder JF, Sah JP et al (2000) The Southeast Saline Everglades revisited: 50 years of coastal vegetation change. J Veg Sci 11:101–112. doi:10.2307/3236781

    Article  Google Scholar 

  • Saha AK, Saha S, Sadle J et al (2011) Sea level rise and South Florida coastal forests. Clim Change 107:81–108. doi:10.1007/s10584-011-0082-0

    Article  Google Scholar 

  • Saha S, Sadle J, Van Der Heiden C, Sternberg L (2015) Salinity, groundwater, and water uptake depth of plants in coastal uplands of everglades national park (florida, USA). Ecohydrology 8:128–136. doi:10.1002/eco.1494

    Article  Google Scholar 

  • South Florida Information Access (SOFIA) (2015) The south Florida environment: a region under stress. In: U.S. Dep. Inter. U.S. Geol. Surv. Circ. 1134. http://sofia.usgs.gov/publications/circular/1134/esns/clim.html. Accessed 21 Feb 2015

  • Sternberg LDSL, Teh SY, Ewe SML et al (2007) Competition between hardwood hammocks and mangroves. Ecosystems 10:648–660. doi:10.1007/s10021-007-9050-y

    Article  Google Scholar 

  • Teh SY, DeAngelis DL, da Sternberg LSL et al (2008) A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades. Ecol Modell 213:245–256. doi:10.1016/j.ecolmodel.2007.12.007

    Article  Google Scholar 

  • Terry JP, Chui TFM (2012) Evaluating the fate of freshwater lenses on atoll islands after eustatic sea-level rise and cyclone-driven inundation: a modelling approach. Glob Planet Change 88–89:76–84. doi:10.1016/j.gloplacha.2012.03.008

    Article  Google Scholar 

  • Van Oosten MJ, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135–146. doi:10.1016/j.envexpbot.2014.11.010

    Article  Google Scholar 

  • Whitcraft CR, Levin LA (2007) Regulation of Benthic Algal and animal communities by salt marsh plants: impact of shading. Ecol Soc Am 88:904–917

    Google Scholar 

Download references

Acknowledgements

This project was funded by the National Park Service George Melendez Wright Climate Change Fellowship, Florida Coastal Everglades Long Term Ecological Research Program, National Science Foundation Research Experiences for Undergraduates Program, the Florida International University Doctoral Evidence Acquisition Fellowship, and the Florida International University Dissertation Year Fellowship. We thank Drs. S. Oberbauer, M. Ross, E. von Wettberg, and L. Scinto for their edits and comments on this manuscript. We greatly appreciate Dr. S. Zona, Curator of the Florida International University Wertheim Conservatory, for his help ordering supplies and providing greenhouse space for the experiment. We thank D. Johnson for coordinating the use of the conductivity meter. We thank field technicians J. Alvarez, J. Hernandez, and N. Sebesta and volunteers B. Barrios, A. Luna, D. Nunez, M. Rose, A. Valdesuso, and A. Zambraro for their hard work putting this experiment together and helping us bring it to fruition.

Author contribution statement

KSW conceived, designed, and performed the research, analyzed the data, and wrote the manuscript. JHR contributed to the research design and data analysis and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristie S. Wendelberger.

Additional information

Communicated by Katherine L Gross.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendelberger, K.S., Richards, J.H. Halophytes can salinize soil when competing with glycophytes, intensifying effects of sea level rise in coastal communities. Oecologia 184, 729–737 (2017). https://doi.org/10.1007/s00442-017-3896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3896-2

Keywords

Navigation