Skip to main content

A Comparative Account of the Morphological and Anatomical Characteristics of Three Medicinal Halophytes

  • Reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Plumbago are perennial spreading shrubs with sprawling, prostrate branches of stem often appearing intertwined and bark containing longitudinal furrows and ridges. Differently colored attractive salverform corolla with persistent calyx with densely covered mucilage secreting stalked emergences are features characteristic of Plumbago flowers. Narrow leaf area index with absence of petiole is disadvantageous in terms of photosynthetic productivity, but advantageous in conserving water loss due to transpiration in dry habitats. In Indian system of traditional medicine (Ayurveda), the roots of Plumbago species were found used in treating various ailments such as rheumatic pain, diarrhea, dyspepsia, pustule, and skin diseases and also as diaphoretic, appetite stimulant, vesicant, and contraceptive agents, since ancient times. The present study aims to delineate the morphological and histo-morpho diagnostic profile of the stem, root, and leaves of three species of Plumbago and analyze their qualitative and quantitative anatomical peculiarities to support the pharmacobotanical characterizations using digital microscopic, stereomicroscopic, and polarized microscopic techniques and photomicrographs taken from the paradermal, cross-sectional, tangential, and radial sections of the specimens.

Cross section of lamina had shown a two-layered palisade parenchyma, which was found to be continuous in the mesophyll. The salt gland complex of Plumbago species was comprised of 16 cells organized into four concentric rings or tiers of four quadrants. Amphistomatic condition with stomatal complex of anisocytic (cruciferous type) type was noticed among the species, where stoma flanked by three specialized subsidiary cells, of which one was markedly smaller than other two. The mean number of stoma per square millimeter of leaf area was found to be varied remarkably among Plumbago species and found to be higher for P. capensis and lower in P. indica and intermediate in P. zeylanica. The cross-sectional view of the root appeared circular in outline in P. indica, but margins shivered in cross sections of P. capensis and P. zeylanica roots. The contour of the midrib was quite characteristic among the species where lamina prominently raised at the middle on the adaxial side to form an inverted V-shaped configuration and vascular bundles in the midrib were collateral and closed and encircled by parenchymatous bundle sheath. Xylem rays were predominantly of biseriate or triseriate and even multiseriate aggregate with 4–5 cells wide occasionally found among the species. Among the three species of Plumbago, the vessel density of root was found to be higher in P. capensis (539.5 μm/mm2) and lower in P. indica (101.85 μm/mm2), and mesomorphy index ratio was found to be lowest (3.05) for P. capensis, highest (46.23) for P. indica, and intermediate (13.47) value for P. zeylanica. At the center portion of cross section of root, secondary xylem showed a somewhat crowding of vessels, and most vessels at these region seemed to be occluded with tylosis in P. indica, P. zeylanica and P. capensis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adlassing, W., Lendl, T., Peroutka, M., & Lang, I. (2010). Deadly glue – Adhesive traps of carnivorous plants. In J. von Byern & I. Grunwald (Eds.), Biological adhesive systems: From nature to technical and medical applications (pp. 37–52). Vienna: Springer.

    Google Scholar 

  • Atkinson, M. R., Findlay, G. P., Hope, A. B., et al. (1967). Salt regulation in the mangrove Rhizophora mucronata Lam. and Aegialitis annulata. R Br. Australian Journal of Biological Sciences, 20, 589–599.

    Article  CAS  Google Scholar 

  • Bergmann, D. C. (2004). Integrating signals in stomatal development. Current Opinion in Plant Biology, 7, 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Breckle, S. W. (1995). How do halophytes overcome salinity? In M. A. Khann & I. A. Ungar (Eds.), Biology of salt tolerant plants (pp. 199–213). Karachi: Department of Botany, University of Karachi.

    Google Scholar 

  • Campbell, N., Thomson, W. W., & Platt, K. (1974). The apoplastic pathway of transport to salt glands. Journal of Experimental Botany, 25, 61–69.

    Article  Google Scholar 

  • Carlquist, S. (1975). Ecological strategies of xylem evolution (pp. 259–260). Berkeley: University of California Press.

    Book  Google Scholar 

  • Carlquist, S. (1997). Ecological factors in wood evolution: A floristic approach. American Journal of Botany, 64(7), 887–896.

    Article  Google Scholar 

  • Carlquist, S., & Boggs, C. J. (1996). Wood anatomy of Plumbaginaceae. Bulletin of the Torrey Botanical Club, 123(2), 135–147.

    Article  Google Scholar 

  • Carlquist, D. A., & Hoekman, D. A. (1985). Ecological wood anatomy of the woody southern Californian Flora. IAWA Journal, 6(4), 319–347.

    Article  Google Scholar 

  • Chopra, R. N., Nayer, S. L., & Chopra, I. C. (1985). Glossory of Indian Medicinal Plants (including supplements). New Delhi: Council of Scientific and Industrial Research.

    Google Scholar 

  • Christenhusz, M. J. M., & Byng, J. W. (2016). The number of known plant species in the world and its annual increase. Phytotaxa, 261(3), 201–207.

    Article  Google Scholar 

  • Daraban, I. N., Mihali, C. V., Turcus, V., et al. (2013). ESEM and EDAX observations on leaf and stem epidermal structures (stomata and salt glands) in Limonium gmelinii (Willd.) Kuntze. Annals of the Romanian Society for Cell Biology, 18, 123–130.

    Google Scholar 

  • Das, S. (2002). On the ontogeny of stomata and glandular hairs in some Indian mangroves. Acta Botanica Croatica, 61, 199–205.

    Google Scholar 

  • De Fraine, E. (1916). The morphology and anatomy of the genus Statice as represented at Blakeney Point. Annals of Botany, 30, 249–282.

    Google Scholar 

  • Ding, F., Yang, J. C., Yuan, F., et al. (2010). Progress in mechanism of salt excretion in recretohalopytes. Frontiers of Biology, 5(2), 164–170.

    Article  Google Scholar 

  • Doheny-Adams, T., Hunt, L., Franks, P. J., et al. (2012). Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 547–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esau, K. (1977). Anatomy of seed plants. New York: Wiely.

    Google Scholar 

  • Faber, F. C. (1923). ZurPhysiologie der Man- groven. Berichte der Deutschen Botanischen Gesellschaft, 41, 227–234.

    Google Scholar 

  • Fahn, A. (1990). Plant anatomy (4th ed.). Oxford: Pergamon Press.

    Google Scholar 

  • Faraday, D., & Thomson, W. W. (1976). Structural aspects of the salt glands of the Plumbaginaceae. Journal of Experimental Botany, 37(177), 461–470.

    Google Scholar 

  • Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in and plants. Functional Plant Biology, 37, 604–612.

    Article  Google Scholar 

  • Geisler, M., Nadeu, J., & Sack, F. D. (2000). Oriented asymmetrical divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by too many mouths mutation. Plant Cell, 12, 2078–2086.

    Article  Google Scholar 

  • Grigore, M. N., & Toma, C. (2016). Structure of salt glands of Plumbaginaceae: Rediscovering old findings of the 19th century: ‘Mettenius’ or ‘Licopoli’ organs? Journal of Plant Development, 23, 37–52.

    Google Scholar 

  • Hernández-ledesma, P., Berendsohn, P. W., Borsch, T., et al. (2015). A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia, 45(3), 281–383.

    Article  Google Scholar 

  • Hunt, L., & Gray, J. E. (2009). The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Current Biology, 19(10), 864–869.

    Article  CAS  PubMed  Google Scholar 

  • Kubitzki, K. (1993). Plumbaginaceae. In K. Kubitzki (Ed.), Families and genera of vascular plants (Vol. 2, pp. 523–530). Berlin: Springer.

    Google Scholar 

  • Larkin, J. C., Marks, M. D., Nadeau, J., et al. (1997). Epidermal cell fate and patterning in leaves. Plant Cell, 9, 1109–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Licopoli, G. (1866). Richerche microscopiche sopra alcuni organi particolari della Statice monopetala. Sulla formazione di alcune organi nella Statice monopetala destinati all’escrezione di sostanza minerale, (Extract from) Ann. dell’ Acad. d. aspir. natural. di Napoli: 1–14.

    Google Scholar 

  • Lledo, M. D., Crespo, M. B., Cameron, K. M., et al. (1998). Systematics of Plumbaginaceae based upon cladistic analysis of rbcL sequence data. Systematic Botany, 23, 21–29.

    Article  Google Scholar 

  • Lledó, M. D., Karis, P. O., Crespo, M. B., et al. (2001). Phylogenetic position and taxonomic status of the genus Aegialitis and subfamilies Staticoideae and Plumbaginoideae (Plumbaginaceae): Evidence from plastid DNA sequences and morphology. Plant Systematics and Evolution, 229, 107–124.

    Article  Google Scholar 

  • Lledó, M. D., Erben, M., Crespo, M. B., et al. (2005). New name for the recently published Myriolepis (Plumbaginaceae). Taxon, 54, 811–812.

    Article  Google Scholar 

  • Luttge, U. (1971). Structure and function of plant glands. Annual Review of Plant Physiology, 22, 23–44.

    Article  Google Scholar 

  • Meyra, A.G., Kuz, V.A., Zarragoicohea, G.J. (2007). Geometrical and physicochemical considerations of the pit membrane in relation to air seeding: the pit membrane as a capillary valve. Tree Physiology 27:1401–405.

    Article  PubMed  Google Scholar 

  • Metcalfe, C. R., & Chalk, L. (1985). Anatomy of the dicotyledons: Wood structure and conclusion of the general introduction (Vol. 2, 2nd ed.). Oxford: The Clarendon Press.

    Google Scholar 

  • Mettenius, G. (1856). FilicesHortiBotaniciLipsiensis. Die Farne Des BotanischenGartenszu Leipzig (p. 135). Leipzig: von Leopold Voss Verlag.

    Google Scholar 

  • Moharrek, F., Osaloo, S. K., & Assadi, M. (2014). Molecular phylogeny of Plumbaginaceae with emphasis on Acantholimon Boiss. Based on nuclear and plastid DNA sequences in Iran. Biochemical Systematics and Ecology, 57, 117–127.

    Article  CAS  Google Scholar 

  • Neumann, P. M., Azaizech, H., & Leon, D. (2011). Hardening of root cell walls: A growth inhibitory response to salinity stress. Plant, Cell & Environment, 17, 303–309.

    Article  Google Scholar 

  • Panicker, S., & Haridasan, V. K. (2016). Grip and slip: Mechanical interactions between insects and epidermis of flowers and their stalks. Communicative & Integrative Biology, 2(6), 505–508.

    Google Scholar 

  • Raunkiaer, C. (1934). Life form of plants and statistical plant geography. Oxford: The Clarendon Press.

    Google Scholar 

  • Ruhland, W. (1915) Untersuchungen über die Hautdrüsen der Plumbaginaceen. Ein Beitrag zur Biologie der Halophyten. Jb Wiss Bot 55:409–498

    Google Scholar 

  • Sachs, T. (1991). Pattern formation in plant tissues. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sakai, W. S. (1974). Scanning electron microscopy and energy dispersive X- ray analysis of chalk secreting leaf glands of Plumbago capensis. American Journal of Botany, 64, 94–99.

    Article  Google Scholar 

  • Scholz, A., Kelpsch, M., Karimsi, Z., et al. (2013). How to quantify conduits in wood? Frontiers in Plant Science, 4, 1–11.

    Article  Google Scholar 

  • Simpson, M. G. (2019). Plant systematics (3rd ed.). California, USA: Elsevier-Academic Press.

    Google Scholar 

  • Sivarajan, V. V., & Balachandran, I. (2006). Ayurvedic drugs and their plant sources (pp. 119–112). New Delhi: Oxford & IBN Publishing Company.

    Google Scholar 

  • Sperry, J. S., Hacke, U. G., & Pittermann, J. (2006). Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93, 1490–1500.

    Article  PubMed  Google Scholar 

  • Sudhakaran MV (2017) Histo-chromotographic finger printing profile of the root of Plumbago zeylanica Linn and quantification of marker compound, Plumbagin. The Pharmacognosy Journal 9(6) Suppl:s77-s86.

    Google Scholar 

  • Sudhakaran, M. V. (2019). Micromorphology of salt glands and content of marker compound plumbagin in the leaves of Plumbago zeylanica Linn. The Pharmacognosy Journal, 11(1), 161–170.

    Article  CAS  Google Scholar 

  • Tan, W. K., Lin, Q., Lim, T. M., et al. (2013). Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing saline environment. Plant, Cell & Environment, 36, 1410–1422.

    Article  CAS  Google Scholar 

  • Tang, M., Hu, Y. X., Lin, J. X., et al. (2002). Developmental mechanism and distribution pattern of stomatal clusters in Begonia peltatifolia. Acta Botanica Sinica, 44, 384–390.

    Google Scholar 

  • Thomson, W. W. (1975). The structure and function of salt glands. In A. Poljakoff-Mayber & J. Gale (Eds.), Plants in saline environments. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Thomson, W. W., & Liu, L. L. (1967). Ultrastructural features of the salt gland of Tamarix aphylla L. Planta, 73(2), 201–220.

    Article  CAS  PubMed  Google Scholar 

  • Vassilyev, A. E., & Stepanova, A. A. (1990). The ultrastructure of ion-secreting and non-secreting salt glands of Limonium platyphyllum. Journal of Experimental Botany, 4, 41–46.1.

    Article  Google Scholar 

  • Waisel, Y. (1972). Biology of halophytes. New York: Academic.

    Google Scholar 

  • Yamada, T., Okude, T., Abdullah, M., et al. (2000). The leaf development process and its significance for reducing self-shading of a tropical pioneer tree species. Oecologia, 125, 476–482.

    Article  PubMed  Google Scholar 

  • Yamamoto, A., Hashiguchi, M., Akune, R., et al. (2016). The relationship between salt gland density and sodium accumulation/secretion in wide selection from three Zoysia species. Australian Journal of Botany, 64, 277–284.

    Article  CAS  Google Scholar 

  • Yuan, F., Lyu, M. A., Leng, B., et al. (2016). The transcriptome of NaCl treated Limonium bicolar leaves the genes controlling salt secretion of salt gland. Plant Molecular Biology, 91, 241–256.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sudhakaran, M.V. (2021). A Comparative Account of the Morphological and Anatomical Characteristics of Three Medicinal Halophytes. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_39

Download citation

Publish with us

Policies and ethics