Skip to main content

Halophytes as a Resource for Livestock in Africa: Present Status and Prospects

  • Reference work entry
  • First Online:
Handbook of Halophytes
  • 52 Accesses

Abstract

Africa’s population is expected to double by 2050 to 2.5 billion. This population growth must be accompanied by improved plant productivity. However, meeting the required levels of plant productivity will be a challenge because of environmental constraints. Indeed, the majority of African countries suffer from water shortage and salinization of agricultural soils, and this will become even more acute in the next few years as a result of climate change. Livestock in Africa suffers from a chronic shortage of feed, especially during the dry periods of the year. Several African countries import a large percentage of their needs for animal feed. Halophytes are remarkable plants that grow in highly saline soils and to some extent in drought conditions. These plants can be used for (i) the elucidation of physiological mechanisms and the genetic basis of salt tolerance; (ii) phytoremediation, desalination, bioenergy production, and culture in association with glycophytes; and (iii) feeding animals as fodder plants. Some halophytes, such as the Chenopodiaceae, contain undesirable compounds. To overcome this drawback, halophytes can be either offered to animals as a supplement or grown in combination with other glycophytes, especially legumes.

This chapter deals with the diversity and ecology of halophytes and their uses. This chapter also highlights the beneficial impact of the use of halophytes to feed animals to preserve the fresh water in the African continent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelly, C., Barhoumi, Z., Ghnaya, T., Debez, A., Ben Hamed, K., Ksouri, R., Talbi, O., Zribi, F., Ouerghi, Z., Smaoui, A., Huchzermeyer, B., & Grignon, C. (2006). Potential utilisation of halophytes for the rehabilitation and valorization of salt-affected areas in Tunisia. In M. Öztürk, Y. Waisel, M. A. Khan, & G. Görk (Eds.), Biosaline agriculture and salinity tolerance in plants (pp. 163–172). Switzerland: Birkhäuser Verlag.

    Chapter  Google Scholar 

  • Abideen, Z., Ansari, Z., & Khan, M. A. (2011). Halophytes: Potential source of ligno-cellulosic biomass for ethanol production. Biomass and Bioenergy, 35, 1818–1822.

    Article  CAS  Google Scholar 

  • Abou El Nasr, H. M., Kandil, H. M., El-Kerdawy, D. A., Khamis, H. S., & El Shaer, H. M. (1996). Value of processed saltbush and acacia shrubs as sheep fodder under arid conditions of Egypt. Small Ruminant Research, 24, 15–20.

    Article  Google Scholar 

  • Anon, A. H. (1992). Revegetation of salt affected lands of deltaic Mediterranean coast. Egypt Project 90009, Phase II final report. Cairo: Supreme Council of Universities.

    Google Scholar 

  • Aronson, J. (1989). HALOPH: a database of salt tolerant plants of the world (p. 77). Tucson: Office of Arid Land Studies, Univ. Arizona.

    Google Scholar 

  • Arya, S. S., Devi, S., Ram, K., Kumar, S., Kumar, N., Mann, A., Kumar, A., & Chand, G. (2019). Halophytes: the plants of therapeutic medicine. In M. Hasanuzzaman, K. Nahar, & M. Öztürk (Eds.), Ecophysiology, abiotic stress responses and utilization of halophytes (pp. 271–287). Singapore: Springer.

    Chapter  Google Scholar 

  • Attia-Ismail, S. A., Elsayed, H. M., Askar, A. R., & Zaki, E. A. (2009). Effect of different buffers on rumen kinetics of sheep fed halophyte plants. Journal of Environmental Sciences, 19(1), 89–106.

    Google Scholar 

  • Batanouny, K. H. (1994). Halophytes and halophytic plant communities in the Arab region: their potential as a rangeland resource. In V. R. Squires & A. T. Ayoub (Eds.), Halophytes as a resource for livestock and for rehabilitation of degraded lands (p. 139). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Ben Salem, H., Nefzaoui, A., & Abdouli, H. (1994). Palatability of shrubs and fodder trees measured on sheep and camels, Methodological approach and preliminary results. In V. Papanastasis & L. Stringi (Eds.), Fodder trees and shrubs (Cahiers Options Méditerranéennes) (Vol. 4, pp. 35–48). Zaragoza: CIHEAM.

    Google Scholar 

  • Chaieb, G., Abdelly, C., & Michalet, R. (2019). Interactive effects of climate and topography on soil salinity and vegetation zonation in North-African continental saline depressions. Journal of Vegetation Science, 30, 312–321.

    Article  Google Scholar 

  • Chiu, C. Y., Hsiu, F. S., Chen, S. S., & Chou, C. H. (1995). Reduced toxicity of Cu and Zn to mangrove seedlings (Kandelia candel (L.) Druce.) in saline environments. Botanical Bulletin- Academia Sinica, 36, 19–24.

    CAS  Google Scholar 

  • Choukr-Allah, R., Malcolm, C., & Hamdy, A. (Eds.). (1995). Halophytes and biosaline agriculture (pp. 221–236). New York: Marcel Dekker.

    Google Scholar 

  • Debez, A., Belghith, I., Friesen, J., Montzka, C., & Elleuche, S. (2017). Facing the challenge of sustainable bioenergy production: could halophytes be part of the solution? Journal of Biological Engineering, 11, 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Declercq, D. R., & Daun, J. K. (1998). Quality of 1997 Ontario Canola. Final report. Winnipeg: Grain Research Laboratory, Canadian Grain Commission.

    Google Scholar 

  • Deng, Y. Q., Feng, Z. T., Yuan, F., Guo, J. R., Suo, S. S., & Wang, B. S. (2015). Identification and functional analysis of the autofluorescent substance in Limonium bicolor salt glands. Plant Physiology and Biochemistry, 97, 20–27. https://doi.org/10.1016/j.plaphy.2015.09.007.

    Article  CAS  PubMed  Google Scholar 

  • Du Toit, C. J. L., Van Niekerk, W. A., Rethman, N. F. G., & Coertze, R. J. (2004). The effect of type and level of carbohydrate supplementation on intake and digestibility of Atriplex nummularia cv. De Kock. South African Journal of Animal Science, 34(5), 35.

    Google Scholar 

  • El Shaer, H. M. (2010). Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Research, 91, 3–12.

    Article  Google Scholar 

  • El Shaer, H. M., & Attia-Ismail, S. A. (2015). Halophytic and salt tolerant feedstuffs in the Mediterranean basin and Arab region: an overview. In H. M. El Shaer & V. R. Squires (Eds.), Halophytic and salt-tolerant feedstuffs impacts on nutrition, physiology and reproduction of livestock (pp. 21–36). Boca Raton: CRC Press Taylor & Francis Group.

    Chapter  Google Scholar 

  • Eshel, A., Oren, I., Alekparov, C., Eilam, T., & Zilberstein, A. (2011). Biomass production by desert halophytes: alleviating the pressure on the scarce resources of arable soil and fresh water. European Journal of Plant Science and Biotechnology, 5, 48–53.

    Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. The New Phytologist, 179, 945–963.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., Hajibagheri, M. A., & Clipson, N. J. W. (1986). Halophytes. The Quarterly Review of Biology, 61, 313–337.

    Article  Google Scholar 

  • Gairola, S., Bhatt, A., & El-Keblawy, A. (2015). A perspective on potential use of halophytes for reclamation of salt-affected lands. Wulfenia Journal, 22, 88–97.

    Google Scholar 

  • Gandour, M., Neji, M., Hessini, K., Smida, M., Abdelly, C., & Taamalli, W. (2014). Assessing the salt tolerance of Sulla carnosa genotypes by agronomic indicators. Agronomy Journal, 106, 185–190.

    Article  CAS  Google Scholar 

  • Gandour, M., Taamalli, W., & Abdelly, C. (2017). Is genetic variability of coastal species (Cakile Maritima) due to human effect? Agricultural Research & Technology, 12(5), 555862.

    Google Scholar 

  • Ghnaya, T., Nouairi, I., Slama, I., Messedi, D., Grignon, C., Abdelly, C., & Ghorbel, M. H. (2005). Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physiology, 162, 1133–1140.

    Article  CAS  PubMed  Google Scholar 

  • Ghnaya, T., Slama, I., Messedi, D., Grignon, C., Ghorbel, M. H., & Abdelly, C. (2007). Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere, 67, 72–79.

    Article  CAS  PubMed  Google Scholar 

  • Glenn, E. P., Squires, V. R., & Brown, J. J. (1997). Saline soils in the drylands: extent of the problem and prospects for utilization. In World atlas of desertification (2nd ed., pp. 144–147). London: Edward Arnold/UNEP.

    Google Scholar 

  • Gu, J. W., Hou, D. L., Li, Y. H., Chao, H. B., Zhang, K., Wang, H., Xiang, J., Raboanatahiry, N., Wang, B. S., & Li, M. T. (2019). Integration of proteomic and genomic approaches to dissect seed germination vigor in Brassica napus seeds differing in oil content. BMC Plant Biology, 19, 20.

    Article  Google Scholar 

  • Hachicha, S. F., Barrek, S., Skanji, T., Zarrouk, H., & Ghrabi, Z. G. (2009). Fatty acid, tocopherol, and sterol content of three Teucrium species from Tunisia. Chemistry of Natural Compounds, 45(3), 453–461.

    Article  CAS  Google Scholar 

  • Haddi, M.-L., Filacorda, S., Meniai, K., Rollin, F., & Susmel, P. (2003). In vitro fermentation kinetics of some halophyte shrubs sampled at three stages of maturity. Animal Feed Science and Technology, 104(1–4(2/20)), 215–225.

    Article  Google Scholar 

  • Hamidov, A., Beltrao, J., Neves, A., Khaydarova, V., & Khamidov, M. (2007). Apocynum lancifolium and Chenopodium album-potential species to remediate saline soils. WSEAS Transactions on Environment and Development, 3, 123–128.

    CAS  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., Prasad, M. N. V., Öztürk, M., & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, 2014, 1–13.

    Google Scholar 

  • Hessini, K., Jeddi, K., El Shaer, H. M., Smaoui, A., Ben Salem, H., & Siddique, K. H. M. (2020). Potential of herbaceous vegetation as animal feed in semi-arid Mediterranean saline environments: The case for Tunisia. Agronomy Journal, 112, 2445. https://doi.org/10.1002/agj2.20196.

    Article  CAS  Google Scholar 

  • Hua, K., Zhang, J., Botella, J. R., Ma, C., Kong, F., Liu, B., & Zhu, J. K. (2019). Perspectives on the application of genome-editing technologies in crop breeding. Molecular Plant, 12(8), 1047–1059.

    Article  CAS  PubMed  Google Scholar 

  • Huchzermeyer, B., & Flowers, T. (2013). Putting halophytes to work genetics, biochemistry and physiology. Functional Plant Biology, 40, V–VIII.

    Article  CAS  PubMed  Google Scholar 

  • Jlassi, A., Zorrig, W., Khouni, A. E., Lakhdar, A., Smaoui, A., Abdelly, C., & Rabhi, M. (2013). Phytodesalination of a moderately-salt-affected soil by Sulla carnosa. International Journal of Phytoremediation, 15(4), 398–404.

    Article  PubMed  Google Scholar 

  • Khan, M. A., & Duke, N. C. (2001). Halophytes-A resource for the future. Wetlands Ecology and Management, 9, 455–456.

    Article  Google Scholar 

  • Khan, M. A., Ansari, R., Ali, H., Gul, B., & Nielsen, B. L. (2009). Panicum turgidum a potentially sustainable cattle feed alternative to maize for saline areas. Agriculture, Ecosystems & Environment, 129, 542–546.

    Article  Google Scholar 

  • Kurdali, F. (2009). Growth and N2 fixation in dhaincha/sorghum and dhaincha/sunflower intercropping systems using 15N and 13C natural abundance techniques. Communications in Soil Science and Plant Analysis, 40, 2995–3014.

    Article  CAS  Google Scholar 

  • Kurdali, F., Al-Ain, F., Al-Shammaa, M., & Razzouk, A. K. (2007). Performance of sorghum grown on a salt affected soil manured with dhaincha plant residues using a 15N isotopic dilution technique. Journal of Plant Nutrition, 30, 1605–1621.

    Article  CAS  Google Scholar 

  • Ladeiro, B. (2012). Saline agriculture in the 21st century: Using salt contaminated resources to cope food requirements. Journal of Botany, 2012, 1–7.

    Article  CAS  Google Scholar 

  • Le Houerou, H. N. (1993). Salt tolerant plants for the arid regions of the Mediterranean isoclimatic zone. In H. Leith & A. El-Masoom (Eds.), Towards the rational use of high salinity-tolerant plants (Vol. 1, p. 403). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Le Houerou, H. N. (1994). Halophytes and halophytic plant communities in Inner Asia. In V. R. Squires & A. T. Ayoub (Eds.), Halophytes as resource for livestock and for rehabilitation of degraded lands. Tasks in vegetation science (Vol. 32). Dordrecht: Kluwer.

    Google Scholar 

  • Leng, B. Y., Yuan, F., Dong, X. X., Wang, J., & Wang, B. S. (2018). Distribution pattern and salt excretion rate of salt glands in two recretohalophyte species of Limonium (Plumbaginaceae). South African Journal of Botany, 115, 74–80.

    Article  CAS  Google Scholar 

  • Li, H., Yuan, J. Y., Wu, M., Han, Z. P., Li, L. H., Jiang, H. M., Jia, Y. L., Han, X., Liu, M., Sun, D. L., Chen, C. B., Song, W. I., & Wang, C. G. (2018). Transcriptome and DNA methylome reveal insights into yield heterosis in the curds of broccoli (Brassica oleracea L var. italic). BMC Plant Biology, 18, 168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, J., Zhao, C., Zhang, M., Yuan, F., & Chen, M. (2019). Exogenous melatonin improves seed germination in Limonium bicolor under salt stress. Plant Signaling & Behavior, 14(11), 1659705.

    Article  CAS  Google Scholar 

  • Liang, Z., Chen, K. L., Yan, Y., Zhang, Y., & Gao, C. X. (2018). Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnology Journal, 6(12), 2053–2062.

    Article  CAS  Google Scholar 

  • Ma, Y., Yang, Y., Liu, R., Li, Q., & Song, J. (2019). Adaptation of euhalophyte Suaeda salsa to nitrogen starvation under salinity. Plant Physiology and Biochemistry, 146, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Masters, D. G. (2015). Assessing the feeding value of halophytes. In H. M. El Shaer and V. R. Squires (Eds.), Halophytic and salt-tolerant feedstuffs impacts on nutrition, physiology and reproduction of livestock (pp. 89–105). CRC Press Taylor & Francis Group, Boca Raton, FL, USA.

    Google Scholar 

  • Medila, I., Adamou, A., Arhab, R., & Hessini, K. (2015). Nutritional specificities of some halophytes, eaten by camel, native from Algerians salt ecosystems. Livestock Research for Rural Development, 27(3). http://www.lrrd.org/lrrd27/3/medi27048.html.

  • Mishra, A., & Tanna, B. (2017). Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8, 829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moujahed, N., Guesmi, H., & Hessini, K. (2015). Potential use of halophytes and salt tolerant plants in ruminant feeding: A Tunisian case study. In H. M. El Shaer & V. R. Squires (Eds.), Halophytic and salt-tolerant feedstuffs impacts on nutrition, physiology and reproduction of livestock (pp. 37–59). CRC Press Taylor & Francis Group, Boca Raton, FL, USA.

    Google Scholar 

  • Nanhapo, P. I., Yamane, K., & Iijima, M. (2017). Mixed cropping with ice plant alleviates the damage and the growth of cowpea under consecutive NaCl treatment and after the recovery from high salinity. Plant Production Science, 20, 111–125.

    Article  CAS  Google Scholar 

  • Nedjimi, B., & Daoud, Y. (2009). Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination, 249, 163–166.

    Article  CAS  Google Scholar 

  • Neji, M., Taamalli, W., Smida, M., Abdelly, C., & Gandour, M. (2013). Phenotypic and molecular genetic variation in Tunisian natural populations of Sulla carnosa. Agronomy Journal, 105, 1094–1100.

    Article  Google Scholar 

  • Nikalje, G. C., & Suprasanna, P. (2018). Coping with metal toxicity–cues from halophytes. Frontiers in Plant Science, 9, 777.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikalje, G. C., Bhaskar, S. D., Yadav, K., & Suprasanna, P. (2019). Halophytes: Prospective plants for future. In M. Hasanuzzaman, K. Nahar, & M. Öztürk (Eds.), Ecophysiology, abiotic stress responses and utilization of halophytes (pp. 221–257). Singapore: Springer.

    Chapter  Google Scholar 

  • Oh, D.-H., Dassanayake, M., Haas, J. S., Kropornika, A., Wright, C., Paino d’Urzo, M., Hong, H., Ali, S., Hernandez, A., Lambert, G. M., Inan, G., Galbraith, D. W., Bressan, R. A., Yun, D.-J., Zhu, J.-K., Cheeseman, J. M., & Bohnert, H. J. (2010). Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiology, 154, 1040–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panta, S., Flowers, T., Doyle, R., Lane, P., Haros, G., & Shabala, S. (2016). Growth responses of Atriplex lentiformis and Medicago arborea in three soil types treated with saline water irrigation. Environmental and Experimental Botany, 128, 39–50.

    Article  CAS  Google Scholar 

  • Peters, E. C., Gassman, N. J., Firman, J. C., Richmond, R. H., & Power, E. A. (1997). Ecotoxicology of tropical marine ecosystems. Environmental Toxicology and Chemistry, 16, 12–40.

    Article  CAS  Google Scholar 

  • Qadir, M., Qureshi, R. H., & Ahmad, N. (1996). Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma, 74, 207–217.

    Article  Google Scholar 

  • Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M. H., Koyro, H. W., Ranieri, A., Abdelly, C., & Smaoui, A. (2010). Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101, 6822–6828.

    Article  CAS  PubMed  Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chelappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soil. Soil Biology and Biochemistry, 39, 2661–2664.

    Article  CAS  Google Scholar 

  • Santi, G., D’Annibale, A., & Eshel, A. (2014). Bioethanol production from xerophilic and salt-resistant Tamarix jordanis biomass. Biomass and Bioenergy, 61, 73–81.

    Article  CAS  Google Scholar 

  • Saoudi, W., Badri, M., Gandour, M., Smaoui, A., Abdelly, C., & Tammalli, W. (2017). Assessment of genetic variability among Tunisian populations of Hordeum marinum using morpho-agronomic traits. Crop Science, 57, 302–309.

    Article  Google Scholar 

  • Saoudi, W., Badri, M., Taamalli, W., Zribi, O. T., Gandour, M., & Abdelly, C. (2019). Variability in response to salinity stress in natural Tunisian populations of Hordeum marinum subsp. marinum. Plant Biology, 21, 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Saoudi, W., Badri, M., Gandour, M., Smaoui, A., Abdelly, C., & Taamalli, W. (2020). Analysis of genetic diversity and spatial structure in Tunisian populations of Hordeum marinum ssp. marinum based on molecular markers. The Journal of Agricultural Science, 157, 399–412.

    Article  CAS  Google Scholar 

  • Shabala, S. (2013). Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112, 1209–1221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, R., Wungrampha, S., Singh, V., Pareek, A., & Sharma, M. K. (2016). Halophytes as bioenergy crops. Frontiers in Plant Science, 7, 1372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115, 433–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squires, V. R. (1980). Livestock management in the arid zone. Melbourne: Inkata Press, 281p.

    Google Scholar 

  • Squires, V. R. (1994). Overview of problems and prospects for utilizing halophytes as a resource for livestock and for rehabilitation of degraded lands. In V. R. Squires & A. T. Ayoub (Eds.), Halophytes as a resource for livestock and for rehabilitation of degraded lands (Tasks in vegetation science) (Vol. 32, pp. 1–6). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Squires, V. R. (1998). Prospects for increasing carbon storage in desert soils and the likely impacts on mitigating global climate change. In S. Omar, R. Misak, & D. Al Ajmi (Eds.), Sustainable development in arid zones (Assessment and monitoring of desert ecosystems) (Vol. 1, pp. 19–30). Rotterdam/Brookfield: Balkema.

    Google Scholar 

  • Squires, V. R., & Ayoub, A. T. (Eds.). (1994). Halophytes as a resource for livestock and for rehabilitation of degraded lands. Dordrecht: Kluwer.

    Google Scholar 

  • Squires, V. R., & Ayoub, A. T. (1995). Halophytes as resource for livestock and for rehabilitation of degraded lands (Tasks in vegetation science) (Vol. 32, p. 316). Dordrecht: Kluwer.

    Google Scholar 

  • Squires, V. R., & El Shaer, H. M. (2015). Global distribution and abundance of sources of halophytic and salt tolerant feedstuffs. In H. M. El Shaer & V. R. Squires (Eds.), Halophytic and salt-tolerant feedstuffs impacts on nutrition, physiology and reproduction of livestock (pp. 3–20). CRC Press Taylor & Francis Group, Boca Raton, FL, USA.

    Google Scholar 

  • Sui, N., Tian, S. S., Wang, W. Q., Wang, M. J., & Fan, H. (2017). Overexpression of glycerol-3-phosphate acyltransferase from Suaeda salsa improves salt tolerance in Arabidopsis. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01337.

  • Swingle, R. S., Glenn, E. P., & Riley, J. J. (1995). Halophytes in mixed feeds for livestock. In V. R. Squires & A. T. Ayoub (Eds.), Halophytes as a resource for livestock and for rehabilitation of degraded lands (pp. 97–100). Dordrecht: Kluwer.

    Google Scholar 

  • Swingle, R. S., Glenn, E. P., & Squires, V. R. (1996). Growth performance of lambs fed mixed diets containing halophyte ingredients. Animal Feed Science and Technology, 63, 137–148.

    Article  Google Scholar 

  • Szabolcs, I. (1994). Salt affected soils as the ecosystem for halophytes. In V. R. Squires & A. T. Ayoub (Eds.), Halophytes as a resource for livestock and for rehabilitation of degraded lands (Tasks in vegetation science) (Vol. 32, pp. 19–24). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Van Niekerk, W. A., Sparks, C. F., Rethman, N. F. G., & Coertze, R. J. (2004a). Mineral composition of certain Atriplex species and Cassia sturtii. South African Journal of Animal Science, 34(Supplement), 105.

    Google Scholar 

  • Van Niekerk, W. A., Sparks, C. F., Rethman, N. F. G., & Coertze, R. J. (2004b). Qualitative characteristics of some Atriplex species and Cassia sturtii at two sites in South Africa. South African Journal of Animal Science, 34(5), 108.

    Google Scholar 

  • Van Niekerk, W. A., Vermaak, P. J., NFG, R., & Coertze, R. J. (2004c). Comparison of chemical composition of Atriplex spp. grown under South African conditions with regard to site, species and plant parts. South African Journal of Animal Science, 34(5), 98.

    Google Scholar 

  • Waisel, Y. (1972). Biology of halophytes. New York: Academic.

    Google Scholar 

  • Wang, S. S., Wang, F., Tan, S. J., Wang, M. X., Sui, N., & Zhang, X. S. (2014). Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sac-pollen tube interaction. Frontiers in Plant Science, 5. https://doi.org/10.3389/fpls.2014.00702.

  • Wilson, A. D. (1994). Halophytic shrubs in semi-arid regions of Australia: Value for grazing and land stabilization. In V. R. Squires & A. T. Ayoub (Eds.), Halophytes as a resource for livestock and for rehabilitation of degraded land (Tasks in vegetation science series) (pp. 101–114). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Zhang, T., Song, J., Fan, J. L., & Feng, G. (2015). Effects of saline-waterlogging and dryness/moist alternations on seed germination of halophyte and xerophyte. Plant Species Biology, 30(3), 231–236.

    Article  Google Scholar 

  • Zhang, Y., Shi, S. H., Li, F. L., Zhao, C. Z., Li, A. Q., Hou, L., Xia, H., Wang, B. S., Baltazar, J. L., Wang, X. J., & Zhao, S. Z. (2019). Global transcriptome analysis provides new insights in Thellungiella salsuginea stress response. Plant Biology, 21(5), 796–804.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S. Z., Sun, H. Z., Gao, Y., Sui, N., & Wang, B. S. (2011). Growth regulator-induced betacyanin accumulation and dopa-4,5-dioxygenase (DODA) gene expression in euhalophyte Suaeda salsa calli. In Vitro Cellular & Developmental Biology. Plant, 47(3), 391–398.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounawer Badri .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Badri, M., Ludidi, N. (2021). Halophytes as a Resource for Livestock in Africa: Present Status and Prospects. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_102

Download citation

Publish with us

Policies and ethics