Skip to main content

Knee Joint Preservation Rehabilitation

  • Chapter
  • First Online:
Lower Extremity Joint Preservation

Abstract

Rehabilitation is a critical component of knee osteochondral surgical interventions. The aim of knee joint preservation rehabilitation is to provide a mechanical environment for healing responses that will facilitate the restoration of joint homeostasis and the return to optimal function. Rehabilitation is a stepwise process with load progressions reflecting the biologic healing phases of the affected tissues and individual patient characteristics. The principles of applied biomechanics and exercise prescription are core to the individualisation of the rehabilitation programme. This chapter will present the key components and considerations for knee joint preservation rehabilitation from a pre-operative time point through to return to unrestricted activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mithoefer K, Hambly K, Logerstedt D, Ricci M, Silvers H, Della VS. Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther. 2012;42(3):254–73.

    Article  PubMed  Google Scholar 

  2. Hambly K, Bobic V, Wondrasch B, Van Assche D, Marlovits S. Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice. Am J Sports Med. 2006;34(6):1020–38.

    Article  PubMed  Google Scholar 

  3. van Rossom S, Smith CR, Thelen DG, Vanwanseele B, Van Assche D, Jonkers I. Knee joint loading in healthy adults during functional exercises: implications for rehabilitation guidelines. J Orthop Sports Phys Ther. 2018;48(3):162–73.

    Article  PubMed  Google Scholar 

  4. Edwards PK, Ackland T, Ebert JR. Clinical rehabilitation guidelines for matrix-induced autologous chondrocyte implantation on the tibiofemoral joint. J Orthop Sports Phys Ther. 2014;44(2):102–19.

    Article  PubMed  Google Scholar 

  5. Wondrasch B, Aroen A, Rotterud JH, Hoysveen T, Bolstad K, Risberg MA. The feasibility of a 3 month active rehabilitation program for patients with knee full-thickness articular cartilage lesions: the Oslo CARE study. J Orthop Sports Phys Ther. 2013;43(5):310–24.

    Article  PubMed  Google Scholar 

  6. Topp R, Swank AM, Quesada PM, Nyland J, Malkani A. The effect of prehabilitation exercise on strength and functioning after total knee arthroplasty. PM R. 2009;1(8):729–35.

    Article  PubMed  Google Scholar 

  7. Santa Mina D, Scheede-Bergdahl C, Gillis C, Carli F. Optimization of surgical outcomes with prehabilitation. Appl Physiol Nutr Metab. 2015;40(9):966–9.

    Article  PubMed  Google Scholar 

  8. Costa RA, Oliveira LM, Watanabe SH, Jones A, Natour J. Isokinetic assessment of the hip muscles in patients with osteoarthritis of the knee. Clinics. 2010;65(12):1253–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hinman RS, Hunt MA, Creaby MW, Wrigley TV, McManus FJ, Bennell KL. Hip muscle weakness in individuals with medial knee osteoarthritis. Arthritis Care Res. 2010;62(8):1190–3.

    Article  Google Scholar 

  10. Beumer L, Wong J, Warden SJ, Kemp JL, Foster P, Crossley KM. Effects of exercise and manual therapy on pain associated with hip osteoarthritis: a systematic review and meta-analysis. Br J Sports Med. 2016;50(8):458–63.

    Article  PubMed  Google Scholar 

  11. Alford JW, Cole BJ. Cartilage restoration, Part 1: Basic science, historical perspective, patient evaluation, and treatment options. Am J Sports Med. 2005;33(2):295–306.

    Article  PubMed  Google Scholar 

  12. Williams JM, Moran M, Thonar EJ, Salter RB. Continuous passive motion stimulates repair of rabbit knee articular cartilage after matrix proteoglycan loss. Clin Orthop. 1994;304:252–62.

    Google Scholar 

  13. Buckwalter JA. Effects of early motion on healing of musculoskeletal tissues. Hand Clin. 1996;12(1):13–24.

    CAS  PubMed  Google Scholar 

  14. McGinty G, Irrgang JJ, Pezzullo D. Biomechanical considerations for rehabilitation of the knee. Clin Biomech. 2000;15(3):160–6.

    Article  CAS  Google Scholar 

  15. Grelsamer RP, Weinstein C. Applied biomechanics of the patella. Clin Orthop. 2001;389:9–14.

    Article  Google Scholar 

  16. Wallace DA, Salem GJ, Salinas R, Powers CM. Patellofemoral joint kinetics while squatting with and without an external load. J Orthop Sports Phys Ther. 2002;32(4):141–8.

    Article  PubMed  Google Scholar 

  17. Fitzgerald GK, Axe MJ, Snyder-Mackler L. Proposed practice guidelines for nonoperative anterior cruciate ligament rehabilitation of physically active individuals. J Orthop Sports Phys Ther. 2000;30(4):194–203.

    Article  CAS  PubMed  Google Scholar 

  18. Khan KM, Scott A. Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br J Sports Med. 2009;43(4):247–52.

    Article  CAS  PubMed  Google Scholar 

  19. Carter DR, Beaupre GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ. The mechanobiology of articular cartilage development and degeneration. Clin Orthop. 2004;(427 Suppl):S69–77.

    Google Scholar 

  20. Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM. Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng. 2001;29(6):476–82.

    Article  CAS  PubMed  Google Scholar 

  21. Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci. 1998;111(Pt 5):573–83.

    CAS  PubMed  Google Scholar 

  22. Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res. 1989;7(5):619–36.

    Article  CAS  PubMed  Google Scholar 

  23. Ragan PM, Chin VI, Hung HH, Masuda K, Thonar EJ, Arner EC, et al. Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disk culture system. Arch Biochem Biophys. 2000;383(2):256–64.

    Article  CAS  PubMed  Google Scholar 

  24. Grumbles RM, Howell DS, Howard GA, Roos BA, Setton LA, Mow VC, et al. Cartilage metalloproteases in disuse atrophy. J Rheumatol Suppl. 1995;43:146–8.

    CAS  PubMed  Google Scholar 

  25. Minas T, Peterson L. Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med. 1999;18(1):13–44, v–vi.

    Article  CAS  PubMed  Google Scholar 

  26. Robertson WB, Fick D, Wood DJ, Linklater JM, Zheng MH, Ackland TR. MRI and clinical evaluation of collagen-covered autologous chondrocyte implantation (CACI) at two years. Knee. 2007;14(2):117–27.

    Article  CAS  PubMed  Google Scholar 

  27. Ebert JR, Fallon M, Zheng MH, Wood DJ, Ackland TR. A randomized trial comparing accelerated and traditional approaches to postoperative weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation: findings at 5 years. Am J Sports Med. 2012;40(7):1527–37.

    Article  PubMed  Google Scholar 

  28. Edwards PK, Ackland TR, Ebert JR. Accelerated weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation in the tibiofemoral joint: early clinical and radiological outcomes. Am J Sports Med. 2013;41:2314. https://doi.org/10.1177/0363546513495637.

    Article  PubMed  Google Scholar 

  29. Wondrasch B, Zak L, Welsch GH, Marlovits S. Effect of accelerated weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle on radiographic and clinical outcome after 2 years: a prospective, randomized controlled pilot study. Am J Sports Med. 2009;37(Suppl 1):88S–96S.

    Article  PubMed  Google Scholar 

  30. Negrin L, Kutscha-Lissberg F, Gartlehner G, Vecsei V. Clinical outcome after microfracture of the knee: a meta-analysis of before/after-data of controlled studies. Int Orthop. 2012;36(1):43–50.

    Article  PubMed  Google Scholar 

  31. Erggelet C, Vavken P. Microfracture for the treatment of cartilage defects in the knee joint - a golden standard? J Clin Orthop Trauma. 2016;7(3):145–52.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Camp CL, Stuart MJ, Krych AJ. Current concepts of articular cartilage restoration techniques in the knee. Sports Health. 2014;6(3):265–73.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003;85(90002):25–32.

    Article  PubMed  Google Scholar 

  34. Van Assche D, Caspel DV, Staes F, Saris DB, Bellemans J, Vanlauwe J, et al. Implementing one standardized rehabilitation protocol following autologous chondrocyte implantation or microfracture in the knee results in comparable physical therapy management. Physiother Theory Pract. 2011;27(2):125–36.

    Article  PubMed  Google Scholar 

  35. Della Villa S, Kon E, Filardo G, Ricci M, Vincentelli F, Delcogliano M, et al. Does intensive rehabilitation permit early return to sport without compromising the clinical outcome after arthroscopic autologous chondrocyte implantation in highly competitive athletes? Am J Sports Med. 2010;38(1):68–77.

    Article  PubMed  Google Scholar 

  36. Tyler TF, Lung JY. Rehabilitation following osteochondral injury to the knee. Curr Rev Musculoskelet Med. 2012;5:72.

    Article  PubMed Central  Google Scholar 

  37. Logerstedt DS, Scalzitti DA, Bennell KL, Hinman RS, Silvers-Granelli H, Ebert J, et al. Knee pain and mobility impairments: meniscal and articular cartilage lesions revision 2018. J Orthop Sports Phys Ther. 2018;48(2):A1–A50.

    Article  PubMed  Google Scholar 

  38. Beaufils P, Hulet C, Dhenain M, Nizard R, Nourissat G, Pujol N. Clinical practice guidelines for the management of meniscal lesions and isolated lesions of the anterior cruciate ligament of the knee in adults. Orthop Traumatol Surg Res. 2009;95(6):437–42.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthr Cartil. 2007;15(9):981–1000.

    Article  CAS  Google Scholar 

  40. Fitzgerald GK, Piva SR, Irrgang JJ. Reports of joint instability in knee osteoarthritis: its prevalence and relationship to physical function. Arthritis Rheum. 2004;51(6):941–6.

    Article  PubMed  Google Scholar 

  41. Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes. Am J Sports Med. 2005;33:1003.

    Article  PubMed  Google Scholar 

  42. Myer GD, Ford KR, Palumbo JP, Hewett TE. Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J Strength Cond Res. 2005;19(1):51–60.

    PubMed  Google Scholar 

  43. Noyes FR, Barber-Westin SD, Smith ST, Campbell T, Garrison TT. A training program to improve neuromuscular and performance indices in female high school basketball players. J Strength Cond Res. 2012;26(3):709–19.

    Article  PubMed  Google Scholar 

  44. Silvers-Granelli HJ, Bizzini M, Arundale A, Mandelbaum BR, Snyder-Mackler L. Higher compliance to a neuromuscular injury prevention program improves overall injury rate in male football players. Knee Surg Sports Traumatol Arthrosc. 2018;26:1975–83.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501.

    Article  PubMed  Google Scholar 

  46. Lindblom H, Walden M, Carlfjord S, Hagglund M. Implementation of a neuromuscular training programme in female adolescent football: 3-year follow-up study after a randomised controlled trial. Br J Sports Med. 2014;48(19):1425–30.

    Article  PubMed  Google Scholar 

  47. Madhavan S, Shields RK. Neuromuscular responses in individuals with anterior cruciate ligament repair. Clin Neurophysiol. 2011;122(5):997–1004.

    Article  PubMed  Google Scholar 

  48. Olson TJ, Chebny C, Willson JD, Kernozek TW, Straker JS. Comparison of 2D and 3D kinematic changes during a single leg step down following neuromuscular training. Phys Ther Sport. 2011;12(2):93–9.

    Article  PubMed  Google Scholar 

  49. Thorlund JB, Aagaard P, Roos EM. Thigh muscle strength, functional capacity, and self-reported function in patients at high risk of knee osteoarthritis compared with controls. Arthritis Care Res. 2010;62(9):1244–51.

    Article  Google Scholar 

  50. Thorlund JB, Aagaard P, Roos EM. Muscle strength and functional performance in patients at high risk of knee osteoarthritis: a follow-up study. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):1110–7.

    Article  PubMed  Google Scholar 

  51. Myer GD, Ford KR, Di Stasi SL, Foss KD, Micheli LJ, Hewett TE. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Br J Sports Med. 2015;49(2):118–22.

    Article  PubMed  Google Scholar 

  52. Cacolice PA, Carcia CR, Scibek JS, Phelps AL. The use of functional tests to predict sagittal plane knee kinematics in NCAA-D1 female athletes. Int J Sports Phys Ther. 2015;10(4):493–504.

    PubMed  PubMed Central  Google Scholar 

  53. Chan CX, Wong KL, Toh SJ, Krishna L. Chinese ethnicity is associated with concomitant cartilage injuries in anterior cruciate ligament tears. Orthop J Sports Med. 2018;6(1):2325967117750083.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jimenez G, Cobo-Molinos J, Antich C, Lopez-Ruiz E. Osteoarthritis: trauma vs disease. Adv Exp Med Biol. 2018;1059:63–83.

    Article  CAS  PubMed  Google Scholar 

  55. Neumann J, Hofmann FC, Heilmeier U, Ashmeik W, Tang K, Gersing AS, et al. Type 2 diabetes patients have accelerated cartilage matrix degeneration compared to diabetes free controls: data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2018;26(6):751–61.

    Article  CAS  Google Scholar 

  56. Janakiramanan N, Teichtahl AJ, Wluka AE, Ding C, Jones G, Davis SR, et al. Static knee alignment is associated with the risk of unicompartmental knee cartilage defects. J Orthop Res. 2008;26(2):225–30.

    Article  PubMed  Google Scholar 

  57. Rosenberger P, Dhabhar F, Epel E, Jokl P, Ickovics J. Sex differences in factors influencing recovery from arthroscopic knee surgery. Clin Orthop Relat Res. 2010;468(12):3399–405.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hambly K, Silvers-Granelli H, Steinwachs M. Rehabilitation after articular cartilage repair of the knee in the football (soccer) player. Cartilage. 2012;3(S):50S–6S.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hangaard S, Gudbergsen H, Skougaard M, Bliddal H, Nybing JD, Tiderius CJ, et al. Point of no return for improvement of cartilage quality indicated by dGEMRIC before and after weight loss in patients with knee osteoarthritis: a cohort study. Acta Radiol. 2018;59(3):336–40.

    Article  PubMed  Google Scholar 

  60. Gersing AS, Schwaiger BJ, Nevitt MC, Joseph GB, Chanchek N, Guimaraes JB, et al. Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the Osteoarthritis Initiative. Radiology. 2017;284(2):508–20.

    Article  PubMed  Google Scholar 

  61. Fernandes GS, Parekh SM, Moses J, Fuller C, Scammell B, Batt ME, et al. Prevalence of knee pain, radiographic osteoarthritis and arthroplasty in retired professional footballers compared with men in the general population: a cross-sectional study. Br J Sports Med. 2018;52:678.

    Article  PubMed  Google Scholar 

  62. Frobell RB, Le Graverand MP, Buck R, Roos EM, Roos HP, Tamez-Pena J, et al. The acutely ACL injured knee assessed by MRI: changes in joint fluid, bone marrow lesions, and cartilage during the first year. Osteoarthr Cartil. 2009;17(2):161–7.

    Article  CAS  Google Scholar 

  63. Reinke EK, Spindler KP, Lorring D, Jones MH, Schmitz L, Flanigan DC, et al. Hop tests correlate with IKDC and KOOS at minimum of 2 years after primary ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(11):1806–16.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hussain SM, Tan MC, Stathakopoulos K, Cicuttini FM, Wang Y, Chou L, et al. How are obesity and body composition related to patellar cartilage? A systematic review. J Rheumatol. 2017;44(7):1071–82.

    Article  PubMed  Google Scholar 

  65. Harkey MS, Blackburn JT, Davis H, Sierra-Arevalo L, Nissman D, Pietrosimone B. The association between habitual walking speed and medial femoral cartilage deformation following 30minutes of walking. Gait Posture. 2018;59:128–33.

    Article  PubMed  Google Scholar 

  66. Hernandez-Molina G, Reichenbach S, Zhang B, Lavalley M, Felson DT. Effect of therapeutic exercise for hip osteoarthritis pain: results of a meta-analysis. Arthritis Rheum. 2008;59(9):1221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ardern CL, Taylor NF, Feller JA, Webster KE. Fear of re-injury in people who have returned to sport following anterior cruciate ligament reconstruction surgery. J Sci Med Sport. 2012;15(6):488–95.

    Article  PubMed  Google Scholar 

  68. Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med. 2013;41(7):1549–58.

    Article  PubMed  Google Scholar 

  69. Hsu CJ, George SZ, Chmielewski TL. Association of quadriceps strength and psychosocial factors with single-leg hop performance in patients with meniscectomy. Orthop J Sports Med. 2016;4(12):2325967116676078.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hsu CJ, Meierbachtol A, George SZ, Chmielewski TL. Fear of reinjury in athletes. Sports Health. 2017;9(2):162–7.

    Article  PubMed  Google Scholar 

  71. Rosenthal BD, Boody BS, Hsu WK. Return to play for athletes. Neurosurg Clin N Am. 2017;28(1):163–71.

    Article  PubMed  Google Scholar 

  72. Chmielewski TLZG, Lentz TA, et al. Longitudinal changes in psychosocial factors and their association with knee pain and function after anterior cruciate ligament reconstruction. Phys Ther. 2011;91:1355–66.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Christino MA, Fantry AJ, Vopat BG. Psychological aspects of recovery following anterior cruciate ligament reconstruction. J Am Acad Orthop Surg. 2015;23(8):501–9.

    Article  PubMed  Google Scholar 

  74. Bright P, Hambly K. A systematic review of reporting of rehabilitation in articular-cartilage-repair studies of third-generation autologous chondrocyte implantation in the knee. J Sport Rehabil. 2014;23(3):182–91.

    Article  PubMed  Google Scholar 

  75. Roos EM, Engelhart L, Ranstam J, Anderson AF, Irrgang JJ, Marx RG, et al. ICRS recommendation document: patient-reported outcome instruments for use in patients with articular cartilage defects. Cartilage. 2011;2(2):122–36.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, et al. Development and validation of the International Knee Documentation Committee subjective knee form. Am J Sports Med. 2001;29(5):600–13.

    Article  CAS  PubMed  Google Scholar 

  77. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and Osteoarthritis Outcome Score (KOOS)--development of a self-administered outcome measure. J Orthop Sports Phys Ther. 1998;28(2):88–96.

    Article  CAS  PubMed  Google Scholar 

  78. Howard JS, Lattermann C. Use of preoperative patient reported outcome scores to predict outcome following autologous chondrocyte implantation. Orthop J Sports Med. 2014;2(2 Suppl):2325967114S00050.

    PubMed Central  Google Scholar 

  79. Hambly K. The use of the Tegner Activity Scale for articular cartilage repair of the knee: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):604–14.

    Article  PubMed  Google Scholar 

  80. Toonstra JL, Howell D, English RA, Lattermann C, Mattacola CG. Patient experiences of recovery after autologous chondrocyte implantation: a qualitative study. J Athl Train. 2016;51:1028.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Waldrop D, Lightsey O, Ethington C, Woemmel C, Coke A. Self-efficacy, optimism, health competence and recovery from orthopaedic surgery. J Couns Psychol. 2001;48:233–8.

    Article  Google Scholar 

  82. Thomee P, Wahrborg P, Borjesson M, Thomee R, Eriksson BI, Karlsson J. A new instrument for measuring self-efficacy in patients with an anterior cruciate ligament injury. Scand J Med Sci Sports. 2006;16(3):181–7.

    Article  CAS  PubMed  Google Scholar 

  83. Miller R, Kori S, Todd D. The Tampa Scale. In: Book M, editor. Serial; 1991. Unpublished Report.

    Google Scholar 

  84. Kvist J, Ek A, Sporrstedt K, Good L. Fear of re-injury: a hindrance for returning to sports after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2005;13(5):393–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Hambly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hambly, K., Ebert, J., Wondrasch, B., Silvers-Granelli, H. (2021). Knee Joint Preservation Rehabilitation. In: Brittberg, M., Slynarski, K. (eds) Lower Extremity Joint Preservation. Springer, Cham. https://doi.org/10.1007/978-3-030-57382-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57382-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57381-2

  • Online ISBN: 978-3-030-57382-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics