Skip to main content

Abstract

The worldwide presence of surgical robots will expand significantly over the upcoming years, as key patents of the market frontrunner, the da Vinci Surgical System, continue to expire. Multiple robotic systems, such as the the Senhance Robotic System and the Versius Robotic System, which are commercially available, have expanded upon the da Vinci system design and added additional features. The MIRA system is a novel robotic design in development phase, which miniaturizes and internalizes the robotic working elements. Additional robotics work has been in refining single-port surgery and developing endoscopic devices for natural orifice minimally invasive techniques. Robotic technology for surgery that is in early development includes unlinking robotic elements from external control, integrating data analytics and machine learning, the use of autonomous microbots, and telesurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.

    Article  CAS  Google Scholar 

  2. Davies BL, Hibberd RD, Ng WS, Timoney AG, Wickham JE. The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng H. 1991;205(1):35–8.

    Article  CAS  Google Scholar 

  3. Lane T. A short history of robotic surgery. Ann R Coll Surg Engl. 2018;100(6_sup):5–7.

    Article  Google Scholar 

  4. Sheth KR, Koh CJ. The future of robotic surgery in pediatric urology: upcoming technology and evolution within the field. Front Pediatr. 2019;7:259.

    Article  Google Scholar 

  5. Ngu JC-Y, Tsang CB-S, Koh DC-S. The da Vinci Xi: a review of its capabilities, versatility, and potential role in robotic colorectal surgery. Robot Surg (Auckland). 2017;4:77–85.

    Google Scholar 

  6. Dobbs RW, Halgrimson WR, Madueke I, Vigneswaran HT, Wilson JO, Crivellaro S. Single port robot-assisted laparoscopic radical prostatectomy: initial experience and technique with the da Vinci SP platform. BJU Int. 2019;124:1022–7.

    Article  CAS  Google Scholar 

  7. Kaouk J, Garisto J, Bertolo R. Robotic urologic surgical interventions performed with the single port dedicated platform: first clinical investigation. Eur Urol. 2019;75(4):684–91.

    Article  Google Scholar 

  8. Maurice MJ, Ramirez D, Kaouk JH. Robotic laparoendoscopic single-site retroperitioneal renal surgery: initial investigation of a purpose-built single-port surgical system. Eur Urol. 2017;71(4):643–7.

    Article  Google Scholar 

  9. Barrera K, Wang D, Sugiyama G. Robotic assisted single site surgery: a decade of innovation. Ann Laparosc Endosc Surg. 2020;5:4.

    Article  Google Scholar 

  10. Kaouk JH, Haber G-P, Autorino R, Crouzet S, Ouzzane A, Flamand V, et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol. 2014;66(6):1033–43.

    Article  Google Scholar 

  11. Fanfani F, Restaino S, Rossitto C, Gueli Alletti S, Costantini B, Monterossi G, et al. Total laparoscopic (S-LPS) versus TELELAP ALF-X robotic-assisted hysterectomy: a case-control study. J Minim Invasive Gynecol. 2016;23(6):933–8.

    Article  Google Scholar 

  12. Spinelli A, David G, Gidaro S, Carvello M, Sacchi M, Montorsi M, et al. First experience in colorectal surgery with a new robotic platform with haptic feedback. Color Dis. 2017;20:228–35.

    Article  Google Scholar 

  13. Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surg Endosc. 2018;32(4):1636–55.

    Article  Google Scholar 

  14. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU, et al. Future of robotic surgery in urology. BJU Int. 2017;120(6):822–41.

    Article  Google Scholar 

  15. Abiri A, Juo YY, Tao A, Askari SJ, Pensa J, Bisley JW, et al. Artificial palpation in robotic surgery using haptic feedback. Surg Endosc. 2019;33(4):1252–9.

    Article  Google Scholar 

  16. Brodie A, Vasdev N. The future of robotic surgery. Ann R Coll Surg Engl. 2018;100(Suppl 7):4–13.

    Article  Google Scholar 

  17. Gueli Alletti S, Rossitto C, Cianci S, Perrone E, Pizzacalla S, Monterossi G, et al. The Senhance surgical robotic system (“Senhance”) for total hysterectomy in obese patients: a pilot study. J Robot Surg. 2018;12(2):229–34.

    Article  Google Scholar 

  18. Medgadget Editors. Versius robotic surgical system coming to U.S. Medgadget [Internet]. 2020 Apr 24. Available from: https://www.medgadget.com/2018/12/versius-robotic-surgical-system-coming-to-u-s-via-nicholson-center-training-program.html.

  19. RBR Staff. India hospital deploys CMR surgical versius robot [cited 2020 Apr 26]. Available from: https://www.roboticsbusinessreview.com/health-medical/india-hospital-deploys-cmr-surgical-versius-robot/.

  20. Hares L, Roberts P, Marshall K, Slack M. Using end-user feedback to optimize the design of the Versius surgical system, a new robot-assisted device for use in minimal access surgery. BMJ Surg Interv Health Technol. 2019;1(1):e000019.

    Article  Google Scholar 

  21. SURGROB. Bitrack from ROB surgical. 2019.

    Google Scholar 

  22. Rob Surgical. University research excellence for the patient 2020 [cited 2020 Apr 24]. Available from: https://www.robsurgical.com/story/.

  23. Kang CM, Chong JU, Lim JH, Park DW, Park SJ, Gim S, et al. Robotic cholecystectomy using the newly developed Korean robotic surgical system, Revo-i: a preclinical experiment in a porcine model. Yonsei Med J. 2017;58(5):1075–7.

    Article  Google Scholar 

  24. Chang KD, Abdel Raheem A, Alomair TA, Ahn HK, Rha KH. MP16-08 Revo-I; surgical robotic system: results of Korean FDA (KFDA) approved clinical trial. J Urol. 2018;199(4S):e200.

    Google Scholar 

  25. Hagn U, Konietschke R, Tobergte A, Nickl M, Jorg S, Kubler B, et al. DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg. 2010;5(2):183–93.

    Article  Google Scholar 

  26. Beasley RA. Medical robots: current systems and research directions. J Robot. 2012;2012:14.

    Google Scholar 

  27. Seeliger B. Enabling single-site laparoscopy: the SPORT platform. Surg Endosc. 2019;33(11):3696–703.

    Article  Google Scholar 

  28. Newmarker C. Medtronic finally unveils its new robot-assisted surgery system [cited 2020 Apr 24]. Available from: https://www.massdevice.com/medtronic-finally-unveils-its-new-robot-assisted-surgery-system/.

  29. RBR Staff. Virtual Incision raises $20M for MIRA mini surgical robots [cited 2020 Apr 24]. Available from: https://www.roboticsbusinessreview.com/financial/virtual-incision-20m-mira-mini-surgical-robots/.

  30. Wortman T. Design, analysis, and testing of in vivo surgical robots. Lincoln: University of Nebraska; 2011.

    Google Scholar 

  31. Medical Microinstruments (MMI). S.P.A. MMI’s robotic platform for microsurgery [cited 2020 Apr 24]. Available from: http://www.mmimicro.com/solutions.

  32. Khandalavala K, Shimon T, Flores L, Armijo PR, Oleynikov D. Emerging surgical robotic technology: a progression toward microbots. Ann Laparosc Endosc Surg. 2019;5:3.

    Article  Google Scholar 

  33. Yeung BP, Gourlay T. A technical review of flexible endoscopic multitasking platforms. Int J Surg. 2012;10(7):345–54.

    Article  Google Scholar 

  34. Lomanto D, Wijerathne S, Ho LK, Phee LS. Flexible endoscopic robot. Minim Invasive Ther Allied Technol. 2015;24(1):37–44.

    Article  Google Scholar 

  35. Leong F, Garbin N, Natali CD, Mohammadi A, Thiruchelvam D, Oetomo D, et al. Magnetic surgical instruments for robotic abdominal surgery. IEEE Rev Biomed Eng. 2016;9:66–78.

    Article  Google Scholar 

  36. Bary E. These companies are spending billions so robots can perform surgery without a doctor in the room. MarketWatch, 2020 [cited 2020 Apr 26]. Available from: https://www.marketwatch.com/story/these-companies-are-investing-billions-so-robots-can-perform-surgery-without-a-doctor-in-the-room-2020-02-19.

  37. Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Benjamin Hittelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Casilla-Lennon, M.M., Hittelman, A.B., Netto, J.M.B. (2020). New Robotic Systems. In: Gargollo, P.C. (eds) Minimally Invasive and Robotic-Assisted Surgery in Pediatric Urology. Springer, Cham. https://doi.org/10.1007/978-3-030-57219-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57219-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57218-1

  • Online ISBN: 978-3-030-57219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics