Skip to main content
  • 1226 Accesses

Abstract

While the majority of this textbook addresses the use of transesophageal echocardiography (TEE) for the evaluation of pediatric patients and all patients (pediatric and adult) with congenital heart disease (CHD) primarily in the intraoperative and interventional settings, there are other areas in which TEE can play a significant role in these patients. This chapter focuses on other applications of TEE. We will discuss the most common indications for TEE in this setting, including evaluation for infective endocarditis, cardiac thrombi after CHD surgery, and prosthetic valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

CHD:

Congenital heart disease

CHF:

Congestive heart failure

DVI:

Doppler velocity index

EOA:

Effective orifice area

IE:

Infective endocarditis

PPM:

Patient-prosthesis mismatch

SVC:

Superior vena cava

TAVR:

Transcatheter aortic valve replacement

TEE:

Transesophageal echocardiography

THV :

Transcatheter heart valve

TTE:

Transthoracic echocardiography

VTI:

Velocity time integral

References

  1. Baltimore RS, Gewitz M, Baddour LM, Beerman LB, Jackson MA, Lockhart PB, et al. Infective endocarditis in childhood: 2015 update: a scientific statement from the American Heart Association. Circulation. 2015;132(15):1487–515.

    Article  PubMed  Google Scholar 

  2. Bayer AS, Bolger AF, Taubert KA, Wilson W, Steckelberg J, Karchmer AW, et al. Diagnosis and management of infective endocarditis and its complications. Circulation. 1998;98(25):2936–48.

    Article  PubMed  CAS  Google Scholar 

  3. Ferrieri P, Gewitz MH, Gerber MA, Newburger JW, Dajani AS, Shulman ST, et al. Unique features of infective endocarditis in childhood. Circulation. 2002;105(17):2115–26.

    Article  PubMed  Google Scholar 

  4. Elder RW, Baltimore RS. The changing epidemiology of pediatric endocarditis. Infect Dis Clin N Am. 2015;29(3):513–24.

    Article  Google Scholar 

  5. Saiman L, Prince A, Gersony WM. Pediatric infective endocarditis in the modern era. J Pediatr. 1993;122(6):847–53.

    Article  PubMed  CAS  Google Scholar 

  6. Morris CD, Reller MD, Menashe VD. Thirty-year incidence of infective endocarditis after surgery for congenital heart defect. JAMA. 1998;279(8):599–603.

    Article  PubMed  CAS  Google Scholar 

  7. Martin JM, Neches WH, Wald ER. Infective endocarditis: 35 years of experience at a children’s hospital. Clin Infect Dis. 1997;24(4):669–75.

    Article  PubMed  CAS  Google Scholar 

  8. Lin YT, Hsieh KS, Chen YS, Huang IF, Cheng MF. Infective endocarditis in children without underlying heart disease. J Microbiol Immunol Infect. 2013;46(2):121–8.

    Article  PubMed  Google Scholar 

  9. Stockheim JA, Chadwick EG, Kessler S, Amer M, Abdel-Haq N, Dajani AS, et al. Are the Duke criteria superior to the Beth Israel criteria for the diagnosis of infective endocarditis in children? Clin Infect Dis. 1998;27(6):1451–6.

    Article  PubMed  CAS  Google Scholar 

  10. Li JS, Sexton DJ, Mick N, Nettles R, Fowler VG Jr, Ryan T, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis. 2000;30(4):633–8.

    Article  PubMed  CAS  Google Scholar 

  11. Roe MT, Abramson MA, Li J, Heinle SK, Kisslo J, Corey GR, et al. Clinical information determines the impact of transesophageal echocardiography on the diagnosis of infective endocarditis by the duke criteria. Am Heart J. 2000;139(6):945–51.

    Article  PubMed  CAS  Google Scholar 

  12. Rohmann S, Erbel R, Mohr-Kahaly S, Meyer J. Use of transoesophageal echocardiography in the diagnosis of abscess in infective endocarditis. Eur Heart J. 1995;16(Suppl B):54–62.

    Article  PubMed  Google Scholar 

  13. Rohmann S, Erbel R, Gorge G, Makowski T, Mohr-Kahaly S, Nixdorff U, et al. Clinical relevance of vegetation localization by transoesophageal echocardiography in infective endocarditis. Eur Heart J. 1992;13(4):446–52.

    Article  PubMed  CAS  Google Scholar 

  14. Rohmann S, Seifert T, Erbel R, Jakob H, Mohr-Kahaly S, Makowski T, et al. Identification of abscess formation in native-valve infective endocarditis using transesophageal echocardiography: implications for surgical treatment. Thorac Cardiovasc Surg. 1991;39(5):273–80.

    Article  PubMed  CAS  Google Scholar 

  15. Erbel R, Rohmann S, Drexler M, Mohr-Kahaly S, Gerharz CD, Iversen S, et al. Improved diagnostic value of echocardiography in patients with infective endocarditis by transoesophageal approach. A prospective study. Eur Heart J. 1988;9(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  16. Klodas E, Edwards WD, Khandheria BK. Use of transesophageal echocardiography for improving detection of valvular vegetations in subacute bacterial endocarditis. J Am Soc Echocardiogr. 1989;2(6):386–9.

    Article  PubMed  CAS  Google Scholar 

  17. Daniel WG, Mugge A, Martin RP, Lindert O, Hausmann D, Nonnast-Daniel B, et al. Improvement in the diagnosis of abscesses associated with endocarditis by transesophageal echocardiography. N Engl J Med. 1991;324(12):795–800.

    Article  PubMed  CAS  Google Scholar 

  18. Mugge A, Daniel WG, Frank G, Lichtlen PR. Echocardiography in infective endocarditis: reassessment of prognostic implications of vegetation size determined by the transthoracic and the transesophageal approach. J Am Coll Cardiol. 1989;14(3):631–8.

    Article  PubMed  CAS  Google Scholar 

  19. Reynolds HR, Jagen MA, Tunick PA, Kronzon I. Sensitivity of transthoracic versus transesophageal echocardiography for the detection of native valve vegetations in the modern era. J Am Soc Echocardiogr. 2003;16(1):67–70.

    Article  PubMed  Google Scholar 

  20. Daniel WG, Mugge A, Grote J, Hausmann D, Nikutta P, Laas J, et al. Comparison of transthoracic and transesophageal echocardiography for detection of abnormalities of prosthetic and bioprosthetic valves in the mitral and aortic positions. Am J Cardiol. 1993;71(2):210–5.

    Article  PubMed  CAS  Google Scholar 

  21. Humpl T, McCrindle BW, Smallhorn JF. The relative roles of transthoracic compared with transesophageal echocardiography in children with suspected infective endocarditis. J Am Coll Cardiol. 2003;41(11):2068–71.

    Article  PubMed  Google Scholar 

  22. Penk JS, Webb CL, Shulman ST, Anderson EJ. Echocardiography in pediatric infective endocarditis. Pediatr Infect Dis J. 2011;30(12):1109–11.

    Article  PubMed  Google Scholar 

  23. Durack DT, Beeson PB. Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. Br J Exp Pathol. 1972;53(1):44–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Durack DT, Beeson PB. Experimental bacterial endocarditis. II. Survival of a bacteria in endocardial vegetations. Br J Exp Pathol. 1972;53(1):50–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Karchmer AW. Infective endocarditis. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia, PA: Elsevier Saunders; 2012. p. 1540–60.

    Chapter  Google Scholar 

  26. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30(4):303–71.

    Article  PubMed  Google Scholar 

  27. Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132(15):1435–86.

    Article  PubMed  CAS  Google Scholar 

  28. Shaffer EM, Snider AR, Beekman RH, Behrendt DM, Peschiera AW. Sinus of Valsalva aneurysm complicating bacterial endocarditis in an infant: diagnosis with two-dimensional and Doppler echocardiography. J Am Coll Cardiol. 1987;9(3):588–91.

    Article  PubMed  CAS  Google Scholar 

  29. Anguera I, Miro JM, Vilacosta I, Almirante B, Anguita M, Munoz P, et al. Aorto-cavitary fistulous tract formation in infective endocarditis: clinical and echocardiographic features of 76 cases and risk factors for mortality. Eur Heart J. 2005;26(3):288–97.

    Article  PubMed  Google Scholar 

  30. Anguera I, Miro JM, San Roman JA, de Alarcon A, Anguita M, Almirante B, et al. Periannular complications in infective endocarditis involving prosthetic aortic valves. Am J Cardiol. 2006;98(9):1261–8.

    Article  PubMed  Google Scholar 

  31. Sievers HH, Stierle U, Charitos EI, Hanke T, Misfeld M, Matthias Bechtel JF, et al. Major adverse cardiac and cerebrovascular events after the Ross procedure: a report from the German-Dutch Ross Registry. Circulation. 2010;122(11 Suppl):S216–23.

    PubMed  Google Scholar 

  32. Hasbun R, Vikram HR, Barakat LA, Buenconsejo J, Quagliarello VJ. Complicated left-sided native valve endocarditis in adults: risk classification for mortality. JAMA. 2003;289(15):1933–40.

    Article  PubMed  Google Scholar 

  33. Mills J, Utley J, Abbott J. Heart failure in infective endocarditis: predisposing factors, course, and treatment. Chest. 1974;66(2):151–7.

    Article  PubMed  CAS  Google Scholar 

  34. Ryan EW, Bolger AF. Transesophageal echocardiography (TEE) in the evaluation of infective endocarditis. In: Foster E, editor. Cardiology clinics: Transesophageal Echocardiography. Division of Cardiology, Department of Medicine, University of California, San Francisco, USA; 2000. p. 773–87.

    Google Scholar 

  35. Prendergast BD, Tornos P. Surgery for infective endocarditis: who and when? Circulation. 2010;121(9):1141–52.

    Article  PubMed  Google Scholar 

  36. Saiman L, Prince A, Gersony WM. Pediatric infective endocarditis in the modern era. J Pediatr. 1993;122(6):847–53.

    Article  PubMed  CAS  Google Scholar 

  37. Baddour LM, Wilson WR, Bayer AS, Fowler VGJ, Bolger AF, Levison ME, et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation. 2005;111(23):e394–434.

    PubMed  Google Scholar 

  38. Lopez JA, Ross RS, Fishbein MC, Siegel RJ. Nonbacterial thrombotic endocarditis: a review. Am Heart J. 1987;113(3):773–84.

    Article  PubMed  CAS  Google Scholar 

  39. Asopa S, Patel A, Khan OA, Sharma R, Ohri SK. Non-bacterial thrombotic endocarditis. Eur J Cardiothorac Surg. 2007;32(5):696–701.

    Article  PubMed  Google Scholar 

  40. González Quintela A, Candela MJ, Vidal C, Román J, Aramburo P. Non-bacterial thrombotic endocarditis in cancer patients. Acta Cardiol. 1991;46(1):1–9.

    PubMed  Google Scholar 

  41. Beynon RP, Bahl VK, Prendergast BD. Infective endocarditis. BMJ. 2006;333(7563):334–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Agmon Y, Khandheria BK, Gentile F, Seward JB. Echocardiographic assessment of the left atrial appendage. J Am Coll Cardiol. 1999;34(7):1867–77.

    Article  PubMed  CAS  Google Scholar 

  43. Stabile G, Russo V, Rapacciuolo A, De Divitiis M, De Simone A, Solimene F, et al. Transesophageal echocardiograpy in patients with persistent atrial fibrillation undergoing electrical cardioversion on new oral anticoagulants: a multi center registry. Int J Cardiol. 2015;184:283–4.

    Article  PubMed  Google Scholar 

  44. de Divitiis M, Omran H, Rabahieh R, Rang B, Illien S, Schimpf R, et al. Right atrial appendage thrombosis in atrial fibrillation: its frequency and its clinical predictors. Am J Cardiol. 1999;84(9):1023–8.

    Article  PubMed  Google Scholar 

  45. Ozer O, Sari I, Davutoglu V. Right atrial appendage: forgotten part of the heart in atrial fibrillation. Clin Appl Thromb Hemost. 2010;16(2):218–20.

    Article  PubMed  Google Scholar 

  46. Schweizer P, Bardos P, Erbel R, Meyer J, Merx W, Messmer BJ, et al. Detection of left atrial thrombi by echocardiography. Br Heart J. 1981;45(2):148–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Aschenberg W, Schluter M, Kremer P, Schroder E, Siglow V, Bleifeld W. Transesophageal two-dimensional echocardiography for the detection of left atrial appendage thrombus. J Am Coll Cardiol. 1986;7(1):163–6.

    Article  PubMed  CAS  Google Scholar 

  48. Manning WJ, Weintraub RM, Waksmonski CA, Haering JM, Rooney PS, Maslow AD, et al. Accuracy of transesophageal echocardiography for identifying left atrial thrombi. A prospective, intraoperative study. Ann Intern Med. 1995;123(11):817–22.

    Article  PubMed  CAS  Google Scholar 

  49. Veinot JP, Harrity PJ, Gentile F, Khandheria BK, Bailey KR, Eickholt JT, et al. Anatomy of the normal left atrial appendage: a quantitative study of age-related changes in 500 autopsy hearts: implications for echocardiographic examination. Circulation. 1997;96(9):3112–5.

    Article  PubMed  CAS  Google Scholar 

  50. Karakus G, Kodali V, Inamdar V, Nanda NC, Suwanjutah T, Pothineni KR. Comparative assessment of left atrial appendage by transesophageal and combined two- and three-dimensional transthoracic echocardiography. Echocardiography. 2008;25(8):918–24.

    Article  PubMed  Google Scholar 

  51. Werner JA, Cheitlin MD, Gross BW, Speck SM, Ivey TD. Echocardiographic appearance of the Chiari network: differentiation from right-heart pathology. Circulation. 1981;63(5):1104–9.

    Article  PubMed  CAS  Google Scholar 

  52. Zoghbi WA, Chambers JB, Dumesnil JG, Foster E, Gottdiener JS, Grayburn PA, et al. Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2009;22(9):975–1014; quiz 82–4.

    Google Scholar 

  53. Ross DN. Replacement of aortic and mitral valves with a pulmonary autograft. Lancet. 1967;2(7523):956–8.

    Article  PubMed  CAS  Google Scholar 

  54. Chambers JC, Somerville J, Stone S, Ross DN. Pulmonary autograft procedure for aortic valve disease: long-term results of the pioneer series. Circulation. 1997;96(7):2206–14.

    Article  PubMed  CAS  Google Scholar 

  55. Athanasiou T, Cherian A, Ross D. The Ross II procedure: pulmonary autograft in the mitral position. Ann Thorac Surg. 2004;78(4):1489–95.

    Article  PubMed  Google Scholar 

  56. Protopapas AD, Athanasiou T. Contegra conduit for reconstruction of the right ventricular outflow tract: a review of published early and mid-time results. J Cardiothorac Surg. 2008;3:62.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hickey EJ, McCrindle BW, Blackstone EH, Yeh T, Pigula F, Clarke D, et al. Jugular venous valved conduit (Contegra) matches allograft performance in infant truncus arteriosus repair. Eur J Cardiothorac Surg. 2008;33(5):890–8.

    Article  PubMed  Google Scholar 

  58. Christenson JT, Sierra J, Colina Manzano NE, Jolou J, Beghetti M, Kalangos A. Homografts and xenografts for right ventricular outflow tract reconstruction: long-term results. Ann Thorac Surg. 2010;90(4):1287–93.

    Article  PubMed  Google Scholar 

  59. Dave H, Mueggler O, Comber M, Enodien B, Nikolaou G, Bauersfeld U, et al. Risk factor analysis of 170 single-institutional contegra implantations in pulmonary position. Ann Thorac Surg. 2011;91(1):195–302; discussion 202–3.

    Google Scholar 

  60. Prog Pediatr Cardiol. In: Hopkins RA, editor. Tissue and bio-engineering for congenital cardiac disease 2006. p. 137–244.

    Google Scholar 

  61. Aslam AK, Aslam AF, Vasavada BC, Khan IA. Prosthetic heart valves: types and echocardiographic evaluation. Int J Cardiol. 2007;122(2):99–110.

    Article  PubMed  Google Scholar 

  62. Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009;119(7):1034–48.

    Article  PubMed  Google Scholar 

  63. Oosterhof T, Hazekamp MG, Mulder BJM. Opportunities in pulmonary valve replacement. Expert Rev Cardiovasc Ther. 2009;7(9):1117–22.

    Article  PubMed  Google Scholar 

  64. Kidane AG, Burriesci G, Cornejo P, Dooley A, Sarkar S, Bonhoeffer P, et al. Current developments and future prospects for heart valve replacement therapy. J Biomed Mater Res B Appl Biomater. 2009;88(1):290–303.

    Article  PubMed  CAS  Google Scholar 

  65. Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD, et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2008;118(15):e523–661.

    PubMed  Google Scholar 

  66. Waterbolk TW, Hoendermis ES, den Hamer IJ, Ebels T. Pulmonary valve replacement with a mechanical prosthesis. Promising results of 28 procedures in patients with congenital heart disease. Eur J Cardiothorac Surg. 2006;30(1):28–32.

    Article  PubMed  Google Scholar 

  67. Fleming GA, Hill KD, Green AS, Rhodes JF. Percutaneous pulmonary valve replacement. Prog Pediatr Cardiol. 2012;33(2):143–50.

    Article  Google Scholar 

  68. Momenah TS, El Oakley R, Al Najashi K, Khoshhal S, Al Qethamy H, Bonhoeffer P. Extended application of percutaneous pulmonary valve implantation. J Am Coll Cardiol. 2009;53(20):1859–63.

    Article  PubMed  Google Scholar 

  69. Hasan BS, McElhinney DB, Brown DW, Cheatham JP, Vincent JA, Hellenbrand WE, et al. Short-term performance of the transcatheter Melody valve in high-pressure hemodynamic environments in the pulmonary and systemic circulations. Circ Cardiovasc Interv. 2011;4(6):615–20.

    Article  PubMed  Google Scholar 

  70. Gurvitch R, Cheung A, Ye J, Wood DA, Willson AB, Toggweiler S, et al. Transcatheter valve-in-valve implantation for failed surgical bioprosthetic valves. J Am Coll Cardiol. 2011;58(21):2196–209.

    Article  PubMed  Google Scholar 

  71. Gillespie MJ, Dori Y, Harris MA, Sathanandam S, Glatz AC, Rome JJ. Bilateral branch pulmonary artery melody valve implantation for treatment of complex right ventricular outflow tract dysfunction in a high-risk patient. Circ Cardiovasc Interv. 2011;4(4):e21–3.

    Article  PubMed  Google Scholar 

  72. Billings FT, Kodali SK, Shanewise JS. Transcatheter aortic valve implantation: anesthetic considerations. Anesth Analg. 2009;108(5):1453–62.

    Article  PubMed  Google Scholar 

  73. Kenny D, Hijazi ZM, Kar S, Rhodes J, Mullen M, Makkar R, et al. Percutaneous implantation of the Edwards SAPIEN transcatheter heart valve for conduit failure in the pulmonary position: early phase 1 results from an international multicenter clinical trial. J Am Coll Cardiol. 2011;58(21):2248–56.

    Article  PubMed  Google Scholar 

  74. Rotman OM, Bianchi M, Ghosh RP, Kovarovic B, Bluestein D. Principles of TAVR valve design, modelling, and testing. Expert Rev Med Devices. 2018;15(11):771–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Siddique S, Gada H, Mumtaz MA, Vora AN. Should all low-risk patients now be considered for TAVR? Operative risk, clinical, and anatomic considerations. Curr Cardiol Rep. 2019;21(12):161.

    Article  PubMed  Google Scholar 

  76. Mankad SV, Aldea GS, Ho NM, Mankad R, Pislaru S, Rodriguez LL, et al. Transcatheter mitral valve implantation in degenerated bioprosthetic valves. J Am Soc Echocardiogr. 2018;31(8):845–59.

    Article  PubMed  Google Scholar 

  77. Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009;119(7):1034–48.

    Article  PubMed  Google Scholar 

  78. Rosenhek R, Binder T, Maurer G, Baumgartner H. Normal values for Doppler echocardiographic assessment of heart valve prostheses. J Am Soc Echocardiogr. 2003;16(11):1116–27.

    Article  PubMed  Google Scholar 

  79. Bach DS. Transesophageal echocardiographic (TEE) evaluation of prosthetic valves. Cardiol Clin. 2000;18(4):751–71.

    Article  PubMed  CAS  Google Scholar 

  80. Aslam AK, Aslam AF, Vasavada BC, Khan IA. Prosthetic heart valves: types and echocardiographic evaluation. Int J Cardiol. 2007;122(2):99–110.

    Article  PubMed  Google Scholar 

  81. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr 2009;22(1):1–23; quiz 101–2.

    Google Scholar 

  82. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16(7):777–802.

    Article  PubMed  Google Scholar 

  83. Quiñones M. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009;22(1):1–23.

    Article  PubMed  Google Scholar 

  84. Rosenhek R, Binder T, Maurer G, Baumgartner H. Normal values for Doppler echocardiographic assessment of heart valve prostheses. J Am Soc Echocardiogr. 2003;16(11):1116–27.

    Article  PubMed  Google Scholar 

  85. Zoghbi WA, Chambers JB, Dumesnil JG, Foster E, Gottdiener JS, Grayburn PA, et al. Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report From the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2009;22(9):975–1014; quiz 82–4.

    Google Scholar 

  86. Rahimtoola SH. The problem of valve prosthesis-patient mismatch. Circulation. 1978;58(1):20–4.

    Article  PubMed  CAS  Google Scholar 

  87. Pibarot P, Dumesnil JG. Hemodynamic and clinical impact of prosthesis-patient mismatch in the aortic valve position and its prevention. J Am Coll Cardiol. 2000;36(4):1131–41.

    Article  PubMed  CAS  Google Scholar 

  88. Mohty D, Mohty-Echahidi D, Malouf JF, Girard SE, Schaff HV, Grill DE, et al. Impact of prosthesis-patient mismatch on long-term survival in patients with small St Jude Medical mechanical prostheses in the aortic position. Circulation. 2006;113(3):420–6.

    Article  PubMed  Google Scholar 

  89. Walther T, Rastan A, Falk V, Lehmann S, Garbade J, Funkat AK, et al. Patient prosthesis mismatch affects short- and long-term outcomes after aortic valve replacement. Eur J Cardiothorac Surg. 2006;30(1):15–9.

    Article  PubMed  Google Scholar 

  90. Rahimtoola SH. Choice of prosthetic heart valve in adults an update. J Am Coll Cardiol. 2010;55(22):2413–26.

    Article  PubMed  Google Scholar 

  91. Lam B-K, Chan V, Hendry P, Ruel M, Masters R, Bedard P, et al. The impact of patient-prosthesis mismatch on late outcomes after mitral valve replacement. J Thorac Cardiovasc Surg. 2007;133(6):1464–73.

    Article  PubMed  Google Scholar 

  92. Blackstone EH, Cosgrove DM, Jamieson WRE, Birkmeyer NJ, Lemmer JH, Miller DC, et al. Prosthesis size and long-term survival after aortic valve replacement. J Thorac Cardiovasc Surg. 2003;126(3):783–96.

    Article  PubMed  Google Scholar 

  93. Koch CG, Khandwala F, Estafanous FG, Loop FD, Blackstone EH. Impact of prosthesis-patient size on functional recovery after aortic valve replacement. Circulation. 2005;111(24):3221–9.

    Article  PubMed  Google Scholar 

  94. Pibarot P, Dumesnil JG. Prosthesis-patient mismatch: definition, clinical impact, and prevention. Heart. 2006;92(8):1022–9.

    Article  PubMed  CAS  Google Scholar 

  95. Masuda M, Kado H, Tatewaki H, Shiokawa Y, Yasui H. Late results after mitral valve replacement with bileaflet mechanical prosthesis in children: evaluation of prosthesis-patient mismatch. Ann Thorac Surg. 2004;77(3):913–7.

    Article  PubMed  Google Scholar 

  96. Zamorano JL, Badano LP, Bruce C, Chan K-L, Gonçalves A, Hahn RT, et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. J Am Soc Echocardiogr. 2011;24(9):937–65.

    Article  PubMed  Google Scholar 

  97. Holmes DR, Mack MJ, Kaul S, Agnihotri A, Alexander KP, Bailey SR, et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol. 2012;59(13):1200–54.

    Article  PubMed  Google Scholar 

  98. Shuto T, Kondo N, Dori Y, Koomalsingh KJ, Glatz AC, Rome JJ, et al. Percutaneous transvenous melody valve-in-ring procedure for mitral valve replacement. J Am Coll Cardiol. 2011;58(24):2475–80.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kondo N, Shuto T, McGarvey JR, Koomalsingh KJ, Takebe M, Gorman RC, et al. Melody valve-in-ring procedure for mitral valve replacement: feasibility in four annuloplasty types. Ann Thorac Surg. 2012;93(3):783–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. El-Eshmawi A, Love B, Bhatt HV, Pawale A, Boateng P, Adams DH. Direct access implantation of a Melody valve in native mitral valve: a hybrid approach in the presence of extensive mitral annular calcification. Ann Thorac Surg. 2015;99(3):1085.

    Article  PubMed  Google Scholar 

  101. Trezzi M, Cetrano E, Iacobelli R, Carotti A. Edwards Sapien 3 valve for mitral replacement in a child after melody valve endocarditis. Ann Thorac Surg. 2017;104(6):e429–e30.

    Article  PubMed  Google Scholar 

  102. Pluchinotta FR, Piekarski BL, Milani V, Kretschmar O, Burch PT, Hakami L, et al. Surgical atrioventricular valve replacement with melody valve in infants and children. Circ Cardiovasc Interv. 2018;11(11):e007145.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Ni Jone .

Editor information

Editors and Affiliations

Electronic Supplementary Materials

Large vegetation on the anterior leaflet of mitral valve, resulting in chordal destruction and severe mitral regurgitation (MP4 2708 kb)

Aortic valve endocarditis, seen from a midesophageal aortic valve long axis view (transducer angle 85°–106°) (MP4 5186 kb)

A patient with Staphylococcus aureus bacteremia who had a transthoracic echocardiogram showing a large mass on the aortic valve with fibrinous strands. A vegetation is seen on the aortic valve from endocarditis in the midesophageal five-chamber view. There is a ventricular septal defect that occurred as a complication of the endocarditis, and color Doppler shows flow across the defect (MP4 466 kb)

Endocarditis in a patient with a prosthetic aortic valve (St. Jude). The midesophageal four-chamber view demonstrates a perivalvar abscess that extends into the noncoronary cusp, causing a fistulous tract communicating with the right atrium. A large vegetation has developed in this area and shunting is seen into the right atrium. There is marked aortic regurgitation seen through an area of valve dehiscence (MP4 27995 kb)

Infected sinus of Valsalva aneurysm from aortic valve endocarditis. The preoperative study, obtained from the midesophageal aortic valve short axis and long axis views, shows a large vegetation of the aortic valve and erosion of the right sinus of Valsalva, with blood filling the aneurysm during diastole. Following aortic valve and aortic root surgery, no residual vegetation is seen and the aortic valve manifests normal function, with no insufficiency (MP4 12622 kb)

Infected pseudoaneurysm off ascending aorta. This TEE was performed to evaluate the aortic valve in a patient with a previous aortic valve surgery and persistent fungemia. A large pseudoaneurysm was discovered using the upper esophageal window, transducer angle about 60°. Note that the superior portion of aorta and innominate vein can be seen well in this patient by TEE (MP4 4562 kb)

Thrombus in the superior vena cava, probably associated with a catheter, as seen from a midesophageal bicaval view, (transducer angle 99°), as well as the midesophageal four-chamber view. LA left atrium, LV left ventricle, RA right atrium, RV right ventricle (MP4 4458 kb)

Modified midesophageal left atrial appendage view (transducer angle 55°) showing a thrombus (arrow) in the left atrial appendage (LAA) of a patient with atrial fibrillation. LA left atrium, LUPV left upper pulmonary vein (MP4 691 kb)

Prosthetic mitral valve (bileaflet tilting disk). Midesophageal mitral commissural view, transducer angle 69°. The transducer angle is rotated until both leaflets are profiled and open symmetrically in diastole. There is the usual color flow Doppler profile across the valve (MP4 2015 kb)

Prosthetic mitral with a frozen leaflet, causing stenosis of the valve (mean inflow gradient 21 mm Hg). Midesophageal four-chamber view, transducer angle 0°–14° (MP4 6688 kb)

Concentric pannus formation (arrows) above the mitral valve prosthesis, causing significant supravalvar narrowing (mean gradient 37 mm Hg), seen during diastole. Note that the valve leaflets actually manifest normal, symmetric motion. Midesophageal mitral commissural view, transducer angle 58° (MP4 7150 kb)

Paravalvar regurgitation in a child who underwent mitral valve replacement with a mechanical bileaflet prosthesis (previous history of atrioventricular septal defect repair). This video was obtained from a midesophageal four-chamber view (transducer angle 0°). The prosthesis was too large for the annulus and required insertion at an angle, which resulted both in a large area of paravalvular regurgitation (seen to the left of the prosthesis) as well as a very small effective inflow orifice (MP4 7531 kb)

Prosthetic aortic valve (bileaflet tilting disk) viewed from a deep transgastric position. At a transducer angle of 25° the valve is seen from the side, and the usual peri-valvar washing jets can be seen by color flow Doppler. The transducer angle is then rotated until both leaflets are profiled and symmetric leaflet motion is noted in diastole and systole (about 96°). This view affords a good edge-on view of leaflet motion and flow across the valve, and also provides an excellent angle for spectral Doppler evaluation. Of note, there is a normal spectral Doppler velocity obtained across the valve (MP4 8785 kb)

2D/3D imaging of a biologic prosthetic valve demonstrating vegetation and thrombus formation on the valve. The patient presented with severe aortic valve stenosis related to infective endocarditis, with associated thrombus formation (MP4 192 kb)

Same patient as Video 19.14. Midesophageal aortic valve long axis view (transducer angle 120°) demonstrates a vegetation on a biologic prosthetic valve (MP4 408 kb)

Same patient as Video 19.14. Midesophageal aortic valve short axis view using a transducer angle of 37° to demonstrate the vegetation and fibrinous strands on the biologic prosthetic valve. Note the shadowing of the prosthetic valve (MP4 447 kb)

Midesophageal four-chamber view using color compare of a mitral valve replacement with a Melody valve in the mitral position. There is unobstructed antegrade flow across the valve in diastole, mean inflow gradient 4 mm Hg. There is shadowing produced by the Melody valve prosthesis (MP4 1339 kb)

Case #1. Vegetation is seen on the aortic valve from endocarditis in the midesophageal five-chamber view. There is a ventricular septal defect that occurred as a complication of the endocarditis, and color Doppler shows flow across the defect (MP4 466 kb)

Case #1. The patient from Video 19.18. Multiple vegetations are seen on the aortic valve in a modified midesophageal right ventricular inflow-outflow view using a transducer angle of 87° (MP4 859 kb)

Case #1. The patient from Video 19.18, again using a modified midesophageal right ventricular inflow-outflow view with a transducer angle of 87°. The vegetation has prolapsed through the aortic valve across the ventricular septal defect (MP4 470 kb)

Case #1. The patient from Video 19.18. Midesophageal four-chamber view. Vegetation on the mitral valve (MP4 851 kb)

Case #1. The patient from Video 19.18. Midesophageal four-chamber view. Vegetation on the tricuspid valve (MP4 852 kb)

Case #1. The patient from Video 19.18. Sinus of Valsalva aneurysm formation from infective endocarditis, as seen from a midesophageal aortic valve long axis view. Note the vegetation adjacent to the aneurysm. Color Doppler shows that there is left to right shunting across a ventricular septal defect (MP4 863 kb)

Case #1. The patient from Video 19.18. Sinus of Valsalva aneurysm formation from infective endocarditis, as seen from a midesophageal aortic valve long axis view (using the color compare function). Note the vegetation adjacent to the aneurysm. Color Doppler shows that there is left to right shunting across a ventricular septal defect (MP4 439 kb)

Case #2. Left ventricular (LV) thrombus (arrow) in a patient with dilated cardiomyopathy, undergoing ventricular assist device placement (MP4 2411 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jone, PN., Younoszai, A. (2021). Other Applications, Including the Critical Care Setting. In: Wong, P.C., Miller-Hance, W.C. (eds) Transesophageal Echocardiography for Pediatric and Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-57193-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57193-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57192-4

  • Online ISBN: 978-3-030-57193-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics