Skip to main content

Additional Applications of Transesophageal Echocardiography

  • Chapter
  • First Online:
Transesophageal Echocardiography for Congenital Heart Disease

Abstract

While the majority of this book addresses the use of transesophageal echocardiography (TEE) for the evaluation of patients with congenital heart disease (CHD), there are a number of other conditions in which TEE can play a significant role in pediatric and young adult patients. Some conditions, such as infective endocarditis, can occur in patients with a history of CHD. Other pathologies, such as cardiac tumors, can be seen in the absence of coexisting CHD. This chapter addresses additional applications of TEE in the pediatric and young adult population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karchmer AW. Infective endocarditis. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia: Elsevier Saunders; 2012. p. 1540–60.

    Google Scholar 

  2. McDonald JR. Acute infective endocarditis. Infect Dis Clin North Am. 2009;23:643–64.

    PubMed Central  PubMed  Google Scholar 

  3. Bayer AS, Bolger AF, Taubert KA, et al. Diagnosis and management of infective endocarditis and its complications. Circulation. 1998;98:2936–48.

    CAS  PubMed  Google Scholar 

  4. Ferrieri P, Gewitz MH, Gerber MA, et al. Unique features of infective endocarditis in childhood. Circulation. 2002;105:2115–26.

    PubMed  Google Scholar 

  5. Saiman L, Prince A, Gersony WM. Pediatric infective endocarditis in the modern era. J Pediatr. 1993;122:847–53.

    CAS  PubMed  Google Scholar 

  6. Morris CD, Reller MD, Menashe VD. Thirty-year incidence of infective endocarditis after surgery for congenital heart defect. JAMA. 1998;279:599–603.

    CAS  PubMed  Google Scholar 

  7. Lin YT, Hsieh KS, Chen YS, Huang IF, Cheng MF. Infective endocarditis in children without underlying heart disease. J Microbiol Immunol Infect. 2012;46:121–8.

    Google Scholar 

  8. Durack DT, Lukes AS, Bright DK. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Duke Endocarditis Service. Am J Med. 1994;96:200–9.

    CAS  PubMed  Google Scholar 

  9. Li JS, Sexton DJ, Mick N, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis. 2000;30:633–8.

    CAS  PubMed  Google Scholar 

  10. Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation. 2005;111:e394–434.

    PubMed  Google Scholar 

  11. Bayer AS, Ward JI, Ginzton LE, Shapiro SM. Evaluation of new clinical criteria for the diagnosis of infective endocarditis. Am J Med. 1994;96:211–9.

    CAS  PubMed  Google Scholar 

  12. Del Pont JM, De Cicco LT, Vartalitis C, et al. Infective endocarditis in children: clinical analyses and evaluation of two diagnostic criteria. Pediatr Infect Dis J. 1995;14:1079–86.

    PubMed  Google Scholar 

  13. Hoen B, Beguinot I, Rabaud C, et al. The Duke criteria for diagnosing infective endocarditis are specific: analysis of 100 patients with acute fever or fever of unknown origin. Clin Infect Dis. 1996;23:298–302.

    CAS  PubMed  Google Scholar 

  14. Stockheim JA, Chadwick EG, Kessler S, et al. Are the Duke criteria superior to the Beth Israel criteria for the diagnosis of infective endocarditis in children? Clin Infect Dis. 1998;27:1451–6.

    CAS  PubMed  Google Scholar 

  15. Tissieres P, Gervaix A, Beghetti M, Jaeggi ET. Value and limitations of the von Reyn, Duke, and modified Duke criteria for the diagnosis of infective endocarditis in children. Pediatrics. 2003;112:e467.

    PubMed  Google Scholar 

  16. Prendergast BD. Diagnostic criteria and problems in infective endocarditis. Heart. 2004;90:611–3.

    CAS  PubMed  Google Scholar 

  17. Bonow RO, Carabello BA, Chatterjee K, et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2008;118:e523–661.

    PubMed  Google Scholar 

  18. Tornos P, Iung B, Permanyer-Miralda G, et al. Infective endocarditis in Europe: lessons from the Euro heart survey. Heart. 2005;91:571–5.

    CAS  PubMed  Google Scholar 

  19. Prendergast BD, Tornos P. Surgery for infective endocarditis: who and when? Circulation. 2010;121:1141–52.

    PubMed  Google Scholar 

  20. Kang D-H, Kim Y-J, Kim S-H, et al. Early surgery versus conventional treatment for infective endocarditis. N Engl J Med. 2012;366:2466–73.

    CAS  PubMed  Google Scholar 

  21. Alexiou C, Langley SM, Monro JL. Surgery for infective valve endocarditis in children. Eur J Cardiothorac Surg. 1999;16:653–9.

    CAS  PubMed  Google Scholar 

  22. Karaci AR, Aydemir NA, Harmandar B, et al. Surgical treatment of infective valve endocarditis in children with congenital heart disease. J Card Surg. 2012;27:93–8.

    PubMed  Google Scholar 

  23. Nomura F, Penny DJ, Menahem S, Pawade A, Karl TR. Surgical intervention for infective endocarditis in infancy and childhood. Ann Thorac Surg. 1995;60:90–5.

    CAS  PubMed  Google Scholar 

  24. Martin JM, Neches WH, Wald ER. Infective endocarditis: 35 years of experience at a children’s hospital. Clin Infect Dis. 1997;24:669–75.

    CAS  PubMed  Google Scholar 

  25. Knirsch W, Nadal D. Infective endocarditis in congenital heart disease. Eur J Pediatr. 2011;170:1111–27.

    PubMed  Google Scholar 

  26. Durack DT, Beeson PB. Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. Br J Exp Pathol. 1972;53:44–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Fernicola DJ, Roberts WC. Frequency of ring abscess and cuspal infection in active infective endocarditis involving biologic valves. Am J Cardiol. 1993;72:314–23.

    CAS  PubMed  Google Scholar 

  28. Daniel WG, Mugge A, Martin RP, et al. Improvement in the diagnosis of abscesses associated with endocarditis by transesophageal echocardiography. N Engl J Med. 1991;324:795–800.

    CAS  PubMed  Google Scholar 

  29. Shaffer EM, Snider AR, Beekman RH, Behrendt DM, Peschiera AW. Sinus of Valsalva aneurysm complicating bacterial endocarditis in an infant: diagnosis with two-dimensional and Doppler echocardiography. J Am Coll Cardiol. 1987;9:588–91.

    CAS  PubMed  Google Scholar 

  30. Anguera I, Miro JM, Vilacosta I, et al. Aorto-cavitary fistulous tract formation in infective endocarditis: clinical and echocardiographic features of 76 cases and risk factors for mortality. Eur Heart J. 2005;26:288–97.

    PubMed  Google Scholar 

  31. Kearney RA, Eisen HJ, Wolf JE. Nonvalvular infections of the cardiovascular system. Ann Intern Med. 1994;121:219–30.

    CAS  PubMed  Google Scholar 

  32. Sievers H-H, Stierle U, Charitos EI, et al. Major adverse cardiac and cerebrovascular events after the Ross procedure: a report from the German-Dutch Ross Registry. Circulation. 2010;122:S216–23.

    PubMed  Google Scholar 

  33. Mills J, Utley J, Abbott J. Heart failure in infective endocarditis: predisposing factors, course, and treatment. Chest. 1974;66:151–7.

    CAS  PubMed  Google Scholar 

  34. Pelletier LLJ, Petersdorf RG. Infective endocarditis: a review of 125 cases from the University of Washington Hospitals, 1963–72. Medicine (Baltimore). 1977;56:287–313.

    Google Scholar 

  35. Hasbun R, Vikram HR, Barakat LA, Buenconsejo J, Quagliarello VJ. Complicated left-sided native valve endocarditis in adults: risk classification for mortality. JAMA. 2003;289:1933–40.

    PubMed  Google Scholar 

  36. Ryan EW, Bolger AF. Transesophageal echocardiography (TEE) in the evaluation of infective endocarditis. In: Foster E, editor. Cardiology clinics: transesophageal echocardiography. San Francisco; Division of Cardiology, Department of Medicine, University of California; 2000. p. 773–87.

    Google Scholar 

  37. Erbel R, Rohmann S, Drexler M, et al. Improved diagnostic value of echocardiography in patients with infective endocarditis by transoesophageal approach. A prospective study. Eur Heart J. 1988;9:43–53.

    CAS  PubMed  Google Scholar 

  38. Shanewise JS, Martin RP. Assessment of endocarditis and associated complications with transesophageal echocardiography. Crit Care Clin. 1996;12:411–27.

    CAS  PubMed  Google Scholar 

  39. Jacob S, Tong AT. Role of echocardiography in the diagnosis and management of infective endocarditis. Curr Opin Cardiol. 2002;17:478–85.

    PubMed  Google Scholar 

  40. Reynolds HR, Jagen MA, Tunick PA, Kronzon I. Sensitivity of transthoracic versus transesophageal echocardiography for the detection of native valve vegetations in the modern era. J Am Soc Echocardiogr. 2003;16:67–70.

    PubMed  Google Scholar 

  41. Daniel WG, Mugge A, Grote J, et al. Comparison of transthoracic and transesophageal echocardiography for detection of abnormalities of prosthetic and biologic valves in the mitral and aortic positions. Am J Cardiol. 1993;71:210–5.

    CAS  PubMed  Google Scholar 

  42. Penk JS, Webb CL, Shulman ST, Anderson EJ. Echocardiography in pediatric infective endocarditis. Pediatr Infect Dis J. 2011;30:1109–11.

    PubMed  Google Scholar 

  43. Humpl T, McCrindle BW, Smallhorn JF. The relative roles of transthoracic compared with transesophageal echocardiography in children with suspected infective endocarditis. J Am Coll Cardiol. 2003;41:2068–71.

    PubMed  Google Scholar 

  44. Steckelberg JM, Murphy JG, Ballard D, et al. Emboli in infective endocarditis: the prognostic value of echocardiography. Ann Intern Med. 1991;114:635–40.

    CAS  PubMed  Google Scholar 

  45. Lopez JA, Ross RS, Fishbein MC, Siegel RJ. Nonbacterial thrombotic endocarditis: a review. Am Heart J. 1987;113:773–84.

    CAS  PubMed  Google Scholar 

  46. Asopa S, Patel A, Khan OA, Sharma R, Ohri SK. Non-bacterial thrombotic endocarditis. Eur J Cardiothorac Surg. 2007;32:696–701.

    PubMed  Google Scholar 

  47. González Quintela A, Candela MJ, Vidal C, Román J, Aramburo P. Non-bacterial thrombotic endocarditis in cancer patients. Acta Cardiol. 1991;46:1–9.

    PubMed  Google Scholar 

  48. Beynon RP, Bahl VK, Prendergast BD. Infective endocarditis. BMJ. 2006;333:334–9.

    PubMed  Google Scholar 

  49. Asinger RW, Dyken ML, Fisher M, Hart RG, Sherman DG. Cardiogenic brain embolism. The second report of the Cerebral Embolism Task Force. Arch Neurol. 1989;46:727–43.

    Google Scholar 

  50. Agmon Y, Khandheria BK, Gentile F, Seward JB. Echocardiographic assessment of the left atrial appendage. J Am Coll Cardiol. 1999;34:1867–77.

    CAS  PubMed  Google Scholar 

  51. de Divitiis M, Omran H, Rabahieh R, et al. Right atrial appendage thrombosis in atrial fibrillation: its frequency and its clinical predictors. Am J Cardiol. 1999;84:1023–8.

    PubMed  Google Scholar 

  52. Ozer O, Sari I, Davutoglu V. Right atrial appendage: forgotten part of the heart in atrial fibrillation. Clin Appl Thromb Hemost. 2010;16:218–20.

    PubMed  Google Scholar 

  53. Schweizer P, Bardos P, Erbel R, et al. Detection of left atrial thrombi by echocardiography. Br Heart J. 1981;45:148–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Aschenberg W, Schluter M, Kremer P, Schroder E, Siglow V, Bleifeld W. Transesophageal two-dimensional echocardiography for the detection of left atrial appendage thrombus. J Am Coll Cardiol. 1986;7:163–6.

    CAS  PubMed  Google Scholar 

  55. Manning WJ, Weintraub RM, Waksmonski CA, et al. Accuracy of transesophageal echocardiography for identifying left atrial thrombi. A prospective, intraoperative study. Ann Intern Med. 1995;123:817–22.

    CAS  PubMed  Google Scholar 

  56. Veinot JP, Harrity PJ, Gentile F, et al. Anatomy of the normal left atrial appendage: a quantitative study of age-related changes in 500 autopsy hearts: implications for echocardiographic examination. Circulation. 1997;96:3112–5.

    CAS  PubMed  Google Scholar 

  57. Karakus G, Kodali V, Inamdar V, Nanda NC, Suwanjutah T, Pothineni KR. Comparative assessment of left atrial appendage by transesophageal and combined two- and three-dimensional transthoracic echocardiography. Echocardiography. 2008;25:918–24.

    PubMed  Google Scholar 

  58. Werner JA, Cheitlin MD, Gross BW, Speck SM, Ivey TD. Echocardiographic appearance of the Chiari network: differentiation from right-heart pathology. Circulation. 1981;63:1104–9.

    CAS  PubMed  Google Scholar 

  59. Black IW. Spontaneous echo contrast: where there’s smoke there’s fire. Echocardiography. 2000;17:373–82.

    CAS  PubMed  Google Scholar 

  60. Kwaan HC, Sakurai S, Wang J. Rheological abnormalities and thromboembolic complications in heart disease: spontaneous echo contrast and red cell aggregation. Semin Thromb Hemost. 2003;29:529–34.

    PubMed  Google Scholar 

  61. Chan HS, Sonley MJ, Moes CA, Daneman A, Smith CR, Martin DJ. Primary and secondary tumors of childhood involving the heart, pericardium, and great vessels. A report of 75 cases and review of the literature. Cancer. 1985;56:825–36.

    CAS  PubMed  Google Scholar 

  62. Roberts WC. Primary and secondary neoplasms of the heart. Am J Cardiol. 1997;80:671–82.

    CAS  PubMed  Google Scholar 

  63. Shapiro LM. Cardiac tumours: diagnosis and management. Heart. 2001;85:218–22.

    CAS  PubMed  Google Scholar 

  64. Miyake CY, Del Nido PJ, Alexander ME, et al. Cardiac tumors and associated arrhythmias in pediatric patients, with observations on surgical therapy for ventricular tachycardia. J Am Coll Cardiol. 2011;58:1903–9.

    PubMed  Google Scholar 

  65. Luck SR, DeLeon S, Shkolnik A, Morgan E, Labotka R. Intracardiac Wilms’ tumor: diagnosis and management. J Pediatr Surg. 1982;17:551–4.

    CAS  PubMed  Google Scholar 

  66. Marx GR, Moran AM. Cardiac tumors. In: Allen HD, Dricoll DJ, Shaddy RE, Feltes TF, editors. Moss and Adams’ heart disease in infants, children, and adolescents: including the fetus and young adult. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 1479–95.

    Google Scholar 

  67. Uzun O, Wilson DG, Vujanic GM, Parsons JM, De Giovanni JV. Cardiac tumours in children. Orphanet J Rare Dis. 2007;2:11.

    PubMed Central  PubMed  Google Scholar 

  68. Günther T, Schreiber C, Noebauer C, Eicken A, Lange R. Treatment strategies for pediatric patients with primary cardiac and pericardial tumors: a 30-year review. Pediatr Cardiol. 2008;29:1071–6.

    PubMed  Google Scholar 

  69. Becker AE. Primary heart tumors in the pediatric age group: a review of salient pathologic features relevant for clinicians. Pediatr Cardiol. 2000;21:317–23.

    CAS  PubMed  Google Scholar 

  70. Burke AP, Rosado-de-Christenson M, Templeton PA, Virmani R. Cardiac fibroma: clinicopathologic correlates and surgical treatment. J Thorac Cardiovasc Surg. 1994;108:862–70.

    CAS  PubMed  Google Scholar 

  71. Reynen K. Cardiac myxomas. N Engl J Med. 1995;333:1610–7.

    CAS  PubMed  Google Scholar 

  72. Bulkley BH, Hutchins GM. Atrial myxomas: a fifty year review. Am Heart J. 1979;97:639–43.

    CAS  PubMed  Google Scholar 

  73. Hada Y, Wolfe C, Murray GF, Craige E. Right ventricular myxoma. Case report and review of phonocardiographic and auscultatory manifestations. Am Heart J. 1980;100:871–7.

    CAS  PubMed  Google Scholar 

  74. Leonhardt ET, Kullenberg KP. Bilateral atrial myxomas with multiple arterial aneurysms—a syndrome mimicking polyarteritis nodosa. Am J Med. 1977;62:792–4.

    CAS  PubMed  Google Scholar 

  75. Perez de Isla L, de Castro R, Zamorano JL, et al. Diagnosis and treatment of cardiac myxomas by transesophageal echocardiography. Am J Cardiol. 2002;90:1419–21.

    PubMed  Google Scholar 

  76. Burke A, Johns JP, Virmani R. Hemangiomas of the heart. A clinicopathologic study of ten cases. Am J Cardiovasc Pathol. 1990;3:283–90.

    CAS  PubMed  Google Scholar 

  77. Niwa K, Tashima K, Terai M, Okajima Y, Nakajima H. Contrast-enhanced magnetic resonance imaging of cardiac tumors in children. Am Heart J. 1989;118:424–5.

    CAS  PubMed  Google Scholar 

  78. Link KM, Lesko NM. MR evaluation of cardiac/juxtacardiac masses. Top Magn Reson Imaging. 1995;7:232–45.

    CAS  PubMed  Google Scholar 

  79. Bardo DME. Cardiac magnetic resonance imaging signal characteristics of cardiac tumors in children. J Am Coll Cardiol. 2011;58:1055–6.

    PubMed  Google Scholar 

  80. Obeid AI, Marvasti M, Parker F, Rosenberg J. Comparison of transthoracic and transesophageal echocardiography in diagnosis of left atrial myxoma. Am J Cardiol. 1989;63:1006–8.

    CAS  PubMed  Google Scholar 

  81. Geibel A, Kasper W, Keck A, Hofmann T, Konstantinides S, Just H. Diagnosis, localization and evaluation of malignancy of heart and mediastinal tumors by conventional and transesophageal echocardiography. Acta Cardiol. 1996;51:395–408.

    CAS  PubMed  Google Scholar 

  82. Engberding R, Daniel WG, Erbel R, et al. Diagnosis of heart tumours by transoesophageal echocardiography: a multicentre study in 154 Patients. European Cooperative Study Group. Eur Heart J. 1993;14:1223–8.

    CAS  PubMed  Google Scholar 

  83. Borges AC, Witt C, Bartel T, Muller S, Konertz W, Baumann G. Preoperative two- and three-dimensional transesophageal echocardiographic assessment of heart tumors. Ann Thorac Surg. 1996;61:1163–7.

    CAS  PubMed  Google Scholar 

  84. Brown AS, Why H, Monaghan MJ. Value of multiplane transoesophageal echocardiography in recurrent atrial myxoma. Br Heart J. 1994;71:540.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Goldman JH, Foster E. Transesophageal echocardiographic (TEE) evaluation of intracardiac and pericardial masses. Cardiol Clin. 2000;18:849–60.

    CAS  PubMed  Google Scholar 

  86. Ross DN. Replacement of aortic and mitral valves with a pulmonary autograft. Lancet. 1967;2:956–8.

    CAS  PubMed  Google Scholar 

  87. Chambers JC, Somerville J, Stone S, Ross DN. Pulmonary autograft procedure for aortic valve disease: long-term results of the pioneer series. Circulation. 1997;96:2206–14.

    CAS  PubMed  Google Scholar 

  88. Athanasiou T, Cherian A, Ross D. The Ross II procedure: pulmonary autograft in the mitral position. Ann Thorac Surg. 2004;78:1489–95.

    PubMed  Google Scholar 

  89. Protopapas AD, Athanasiou T. Contegra conduit for reconstruction of the right ventricular outflow tract: a review of published early and mid-time results. J Cardiothorac Surg. 2008;3:62.

    PubMed Central  PubMed  Google Scholar 

  90. Hickey EJ, McCrindle BW, Blackstone EH, et al. Jugular venous valved conduit (Contegra) matches allograft performance in infant truncus arteriosus repair. Eur J Cardiothorac Surg. 2008;33:890–8.

    PubMed  Google Scholar 

  91. Christenson JT, Sierra J, Colina Manzano NE, Jolou J, Beghetti M, Kalangos A. Homografts and xenografts for right ventricular outflow tract reconstruction: long-term results. Ann Thorac Surg. 2010;90:1287–93.

    PubMed  Google Scholar 

  92. Dave H, Mueggler O, Comber M, et al. Risk factor analysis of 170 single-institutional contegra implantations in pulmonary position. Ann Thorac Surg. 2011;91:195–302; discussion 202–3.

    PubMed  Google Scholar 

  93. Hopkins RA, editor. Tissue and bio-engineering for congenital cardiac disease. Prog Pediatr Cardiol. 2006;21(2):137–244.

    Google Scholar 

  94. Aslam AK, Aslam AF, Vasavada BC, Khan IA. Prosthetic heart valves: types and echocardiographic evaluation. Int J Cardiol. 2007;122:99–110.

    PubMed  Google Scholar 

  95. Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009;119:1034–48.

    PubMed  Google Scholar 

  96. Oosterhof T, Hazekamp MG, Mulder BJ. Opportunities in pulmonary valve replacement. Expert Rev Cardiovasc Ther. 2009;7:1117–22.

    PubMed  Google Scholar 

  97. Kidane AG, Burriesci G, Cornejo P, et al. Current developments and future prospects for heart valve replacement therapy. J Biomed Mater Res B Appl Biomater. 2009;88:290–303.

    PubMed  Google Scholar 

  98. Waterbolk TW, Hoendermis ES, den Hamer IJ, Ebels T. Pulmonary valve replacement with a mechanical prosthesis. Promising results of 28 procedures in patients with congenital heart disease. Eur J Cardiothorac Surg. 2006;30:28–32.

    PubMed  Google Scholar 

  99. Fleming GA, Hill KD, Green AS, Rhodes JF. Percutaneous pulmonary valve replacement. Prog Pediatr Cardiol. 2012;33:143–50.

    Google Scholar 

  100. Momenah TS, El Oakley R, Al Najashi K, Khoshhal S, Al Qethamy H, Bonhoeffer P. Extended application of percutaneous pulmonary valve implantation. J Am Coll Cardiol. 2009;53:1859–63.

    PubMed  Google Scholar 

  101. Hasan BS, McElhinney DB, Brown DW, et al. Short-term performance of the transcatheter Melody valve in high-pressure hemodynamic environments in the pulmonary and systemic circulations. Circ Cardiovasc Interv. 2011;4:615–20.

    PubMed  Google Scholar 

  102. Gurvitch R, Cheung A, Ye J, et al. Transcatheter valve-in-valve implantation for failed surgical biologic valves. J Am Coll Cardiol. 2011;58:2196–209.

    PubMed  Google Scholar 

  103. Gillespie MJ, Dori Y, Harris MA, Sathanandam S, Glatz AC, Rome JJ. Bilateral branch pulmonary artery melody valve implantation for treatment of complex right ventricular outflow tract dysfunction in a high-risk patient. Circ Cardiovasc Interv. 2011;4:e21–3.

    PubMed  Google Scholar 

  104. Billings FT, Kodali SK, Shanewise JS. Transcatheter aortic valve implantation: anesthetic considerations. Anesth Analg. 2009;108:1453–62.

    PubMed  Google Scholar 

  105. Kenny D, Hijazi ZM, Kar S, et al. Percutaneous implantation of the Edwards SAPIEN transcatheter heart valve for conduit failure in the pulmonary position: early phase 1 results from an international multicenter clinical trial. J Am Coll Cardiol. 2011;58:2248–56.

    PubMed  Google Scholar 

  106. Webb JG, Wood DA. Current status of transcatheter aortic valve replacement. J Am Coll Cardiol. 2012;60:483–92.

    PubMed  Google Scholar 

  107. Zoghbi WA, Chambers JB, Dumesnil JG, et al. Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report From the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2009;22:975–1014.

    Google Scholar 

  108. Rosenhek R, Binder T, Maurer G, Baumgartner H. Normal values for Doppler echocardiographic assessment of heart valve prostheses. J Am Soc Echocardiogr. 2003;16:1116–27.

    PubMed  Google Scholar 

  109. Bach DS. Transesophageal echocardiographic (TEE) evaluation of prosthetic valves. Cardiol Clin. 2000;18:751–71.

    CAS  PubMed  Google Scholar 

  110. Morguet AJ, Werner GS, Andreas S, Kreuzer H. Diagnostic value of transesophageal compared with transthoracic echocardiography in suspected prosthetic valve endocarditis. Herz. 1995;20:390–8.

    CAS  PubMed  Google Scholar 

  111. Schulz R, Werner GS, Fuchs JB, et al. Clinical outcome and echocardiographic findings of native and prosthetic valve endocarditis in the 1990’s. Eur Heart J. 1996;17:281–8.

    CAS  PubMed  Google Scholar 

  112. Lengyel M. The impact of transesophageal echocardiography on the management of prosthetic valve endocarditis: experience of 31 cases and review of the literature. J Heart Valve Dis. 1997;6:204–11.

    CAS  PubMed  Google Scholar 

  113. Zoghbi WA, Enriquez-Sarano M, Foster E, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16:777–802.

    PubMed  Google Scholar 

  114. Quiñones M. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009;22:1–23.

    PubMed  Google Scholar 

  115. Rahimtoola SH. The problem of valve prosthesis-patient mismatch. Circulation. 1978;58:20–4.

    CAS  PubMed  Google Scholar 

  116. Pibarot P, Dumesnil JG. Hemodynamic and clinical impact of prosthesis-patient mismatch in the aortic valve position and its prevention. J Am Coll Cardiol. 2000;36:1131–41.

    CAS  PubMed  Google Scholar 

  117. Mohty D, Mohty-Echahidi D, Malouf JF, et al. Impact of prosthesis-patient mismatch on long-term survival in patients with small St Jude Medical mechanical prostheses in the aortic position. Circulation. 2006;113:420–6.

    PubMed  Google Scholar 

  118. Walther T, Rastan A, Falk V, et al. Patient prosthesis mismatch affects short- and long-term outcomes after aortic valve replacement. Eur J Cardiothorac Surg. 2006;30:15–9.

    PubMed  Google Scholar 

  119. Rahimtoola SH. Choice of prosthetic heart valve in adults an update. J Am Coll Cardiol. 2010;55:2413–26.

    PubMed  Google Scholar 

  120. Lam B-K, Chan V, Hendry P, et al. The impact of patient-prosthesis mismatch on late outcomes after mitral valve replacement. J Thorac Cardiovasc Surg. 2007;133:1464–73.

    PubMed  Google Scholar 

  121. Blackstone EH, Cosgrove DM, Jamieson WR, et al. Prosthesis size and long-term survival after aortic valve replacement. J Thorac Cardiovasc Surg. 2003;126:783–96.

    PubMed  Google Scholar 

  122. Koch CG, Khandwala F, Estafanous FG, Loop FD, Blackstone EH. Impact of prosthesis-patient size on functional recovery after aortic valve replacement. Circulation. 2005;111:3221–9.

    PubMed  Google Scholar 

  123. Pibarot P, Dumesnil JG. Prosthesis-patient mismatch: definition, clinical impact, and prevention. Heart. 2006;92:1022–9.

    CAS  PubMed  Google Scholar 

  124. Masuda M, Kado H, Tatewaki H, Shiokawa Y, Yasui H. Late results after mitral valve replacement with bileaflet mechanical prosthesis in children: evaluation of prosthesis-patient mismatch. Ann Thorac Surg. 2004;77:913–7.

    PubMed  Google Scholar 

  125. Zamorano JL, Badano LP, Bruce C, et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. J Am Soc Echocardiogr. 2011;24:937–65.

    PubMed  Google Scholar 

  126. Holmes DR, Mack MJ, Kaul S, et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol. 2012;59:1200–54.

    PubMed  Google Scholar 

  127. Zaroff J. Echocardiographic evaluation of the potential cardiac donor. J Heart Lung Transplant. 2004;23:S250–2.

    PubMed  Google Scholar 

  128. Stoddard MF, Longaker RA. The role of transesophageal echocardiography in cardiac donor screening. Am Heart J. 1993;125:1676–81.

    CAS  PubMed  Google Scholar 

  129. Hetzer R, Potapov EV, Alexi-Meskishvili V, et al. Single-center experience with treatment of cardiogenic shock in children by pediatric ventricular assist devices. J Thorac Cardiovasc Surg. 2011;141:616–23, 623.e1.

    PubMed  Google Scholar 

  130. Cooper DS, Jacobs JP, Moore L, et al. Cardiac extracorporeal life support: state of the art in 2007. Cardiol Young. 2007;17 Suppl 2:104–15.

    PubMed  Google Scholar 

  131. Potapov EV, Stiller B, Hetzer R. Ventricular assist devices in children: current achievements and future perspectives. Pediatr Transplant. 2007;11:241–55.

    PubMed  Google Scholar 

  132. Hetzer R, Potapov EV, Stiller B, et al. Improvement in survival after mechanical circulatory support with pneumatic pulsatile ventricular assist devices in pediatric patients. Ann Thorac Surg. 2006;82:917–24; discussion 924–5.

    PubMed  Google Scholar 

  133. Fraser CD, Jaquiss RDB, Rosenthal DN, et al. Prospective trial of a pediatric ventricular assist device. N Engl J Med. 2012;367:532–41.

    CAS  PubMed  Google Scholar 

  134. Chumnanvej S, Wood MJ, MacGillivray TE, Melo MFV. Perioperative echocardiographic examination for ventricular assist device implantation. Anesth Analg. 2007;105:583–601.

    PubMed  Google Scholar 

  135. Davila-Roman VG, Barzilai B. Transesophageal echocardiographic evaluation of patients receiving mechanical assistance from ventricular assist devices. Echocardiography. 1997;14:505–12.

    PubMed  Google Scholar 

  136. Scohy TV, Gommers D, Maat APWM, Dejong PL, Bogers AJJC, Hofland J. Intraoperative transesophageal echocardiography is beneficial for hemodynamic stabilization during left ventricular assist device implantation in children. Paediatr Anaesth. 2009;19:390–5.

    PubMed  Google Scholar 

  137. Sachdeva R, Frazier EA, Jaquiss RDB, Imamura M, Swearingen CJ, Vyas HV. Echocardiographic evaluation of ventricular assist devices in pediatric patients. J Am Soc Echocardiogr. 2013;26:41–9.

    PubMed  Google Scholar 

  138. Baldwin JT, Duncan BW. Ventricular assist devices for children. Prog Pediatr Cardiol. 2006;21:173–84.

    Google Scholar 

  139. Miera O, Potapov EV, Redlin M, et al. First experiences with the HeartWare ventricular assist system in children. Ann Thorac Surg. 2011;91:1256–60.

    PubMed  Google Scholar 

  140. Baldwin JT, Borovetz HS, Duncan BW, Gartner MJ, Jarvik RK, Weiss WJ. The national heart, lung, and blood institute pediatric circulatory support program: a summary of the 5-year experience. Circulation. 2011;123:1233–40.

    PubMed Central  PubMed  Google Scholar 

  141. Addonizio LJ. Pediatric ventricular assist devices—first steps for babies. N Engl J Med. 2012;367:567–8.

    CAS  PubMed  Google Scholar 

  142. Romano P, Mangion JM. The role of intraoperative transesophageal echocardiography in heart transplantation. Echocardiography. 2002;19:599–604.

    PubMed  Google Scholar 

  143. Ishizuka N, Nakamura K, Fujita Y, et al. Transesophageal echocardiographic findings in patients after heart transplantation. J Cardiol. 1997;29:163–70.

    CAS  PubMed  Google Scholar 

  144. del Rio MJ. Transplantation in complex congenital heart disease. Prog Pediatr Cardiol. 2000;11:107–13.

    PubMed  Google Scholar 

  145. Kirklin JK, Naftel DC, Kirklin JW, Blackstone EH, White-Williams C, Bourge RC. Pulmonary vascular resistance and the risk of heart transplantation. J Heart Transplant. 1988;7:331–6.

    CAS  PubMed  Google Scholar 

  146. Meyers BF, Lynch J, Trulock EP, Guthrie TJ, Cooper JD, Patterson GA. Lung transplantation: a decade of experience. Ann Surg. 1999;230:362–70; discussion 370–1.

    CAS  PubMed  Google Scholar 

  147. Serra E, Feltracco P, Barbieri S, Forti A, Ori C. Transesophageal echocardiography during lung transplantation. Transplant Proc. 2007;39:1981–2.

    CAS  PubMed  Google Scholar 

  148. Hausmann D, Daniel WG, Mugge A, et al. Imaging of pulmonary artery and vein anastomoses by transesophageal echocardiography after lung transplantation. Circulation. 1992;86:II251–8.

    CAS  PubMed  Google Scholar 

  149. Gonzalez-Fernandez C, Gonzalez-Castro A, Rodriguez-Borregan JC, et al. Pulmonary venous obstruction after lung transplantation. Diagnostic advantages of transesophageal echocardiography. Clin Transplant. 2009;23:975–80.

    PubMed  Google Scholar 

  150. McIlroy DR, Sesto AC, Buckland MR. Pulmonary vein thrombosis, lung transplantation, and intraoperative transesophageal echocardiography. J Cardiothorac Vasc Anesth. 2006;20:712–5.

    PubMed  Google Scholar 

  151. Asfoura JY, Vidt DG. Acute aortic dissection. Chest. 1991;99:724–9.

    CAS  PubMed  Google Scholar 

  152. Flachskampf FA, Daniel WG. Aortic dissection. In: Foster E, editor. Cardiology Clinics: Transesophageal Echocardiography. 18(4) ed. Medizinische Klinik II, Universitat Erlangen-Nurnberg, Germany. frank.flachskampf@rzmail.uni-erlangen.de: United States; 2000. p. 807–17.

    Google Scholar 

  153. Nienaber CA, Spielmann RP, von Kodolitsch Y, et al. Diagnosis of thoracic aortic dissection. Magnetic resonance imaging versus transesophageal echocardiography. Circulation. 1992;85:434–47.

    CAS  PubMed  Google Scholar 

  154. Matura LA, Ho VB, Rosing DR, Bondy CA. Aortic dilatation and dissection in Turner syndrome. Circulation. 2007;116:1663–70.

    PubMed  Google Scholar 

  155. Erbel R, Bednarczyk I, Pop T, et al. Detection of dissection of the aortic intima and media after angioplasty of coarctation of the aorta. An angiographic, computer tomographic, and echocardiographic comparative study. Circulation. 1990;81:805–14.

    CAS  PubMed  Google Scholar 

  156. Kouchoukos NT, Blackstone EH, Hanley FL, Doty DB, Karp RB. Acute aortic dissection. In: Kirklin/Barratt-Boyes cardiac surgery. 3rd ed. Philadelphia: Churchill Livingstone; 2003. p. 1820–49.

    Google Scholar 

  157. Miller DC, Mitchell RS, Oyer PE, Stinson EB, Jamieson SW, Shumway NE. Independent determinants of operative mortality for patients with aortic dissections. Circulation. 1984;70:I153–64.

    CAS  PubMed  Google Scholar 

  158. DeBakey ME, McCollum CH, Crawford ES, et al. Dissection and dissecting aneurysms of the aorta: twenty-year follow-up of five hundred twenty-seven patients treated surgically. Surgery. 1982;92:1118–34.

    CAS  PubMed  Google Scholar 

  159. Keren A, Kim CB, Hu BS, et al. Accuracy of biplane and multiplane transesophageal echocardiography in diagnosis of typical acute aortic dissection and intramural hematoma. J Am Coll Cardiol. 1996;28:627–36.

    CAS  PubMed  Google Scholar 

  160. Penco M, Paparoni S, Dagianti A, et al. Usefulness of transesophageal echocardiography in the assessment of aortic dissection. Am J Cardiol. 2000;86:53G–6.

    CAS  PubMed  Google Scholar 

  161. Thrumurthy SG, Karthikesalingam A, Patterson BO, Holt PJE, Thompson MM. The diagnosis and management of aortic dissection. BMJ. 2012;344:d8290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre C. Wong MD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Large vegetation on the anterior leaflet of mitral valve, resulting in chordal destruction and severe mitral regurgitation (MPG 4146 kb)

Aortic valve endocarditis, seen from a mid esophageal aortic valve long axis view (multiplane angle 85°–116°) (MPG 8328 kb)

Endocarditis in a patient with a prosthetic aortic valve (St. Jude). The mid esophageal four chamber view demonstrates a perivalvar abscess that extends into the noncoronary cusp, causing a fistulous tract communicating with the right atrium. A large vegetation has developed in this area and shunting is seen into the right atrium. There is marked aortic regurgitation seen through an area of valve dehiscence (MPG 48550 kb)

Infected sinus of Valsalva aneurysm from aortic valve endocarditis. The preoperative study, obtained from the mid esophageal aortic valve short axis and long axis views, shows a large vegetation of the aortic valve and erosion of the right sinus of Valsalva, with blood filling the aneurysm during diastole. Following aortic valve and aortic root surgery, no residual vegetation is seen and the aortic valve manifests normal function, with no insufficiency (MPG 23246 kb)

Infected pseudoaneurysm off ascending aorta. This TEE was performed to evaluate the aortic valve in a patient with a previous aortic valve surgery and persistent fungemia. A large pseudoaneurysm (arrow) was discovered using the upper esophageal window, multiplane angle 60°. Note that the superior portion of aorta and innominate vein can be seen well in this patient by TEE (MPG 7110 kb)

Thrombus in the left ventricular apex of a patient with Duchenne’s muscular dystrophy and dilated cardiomyopathy. Mid esophageal four chamber view, multiplane angle 0° (MPG 7026 kb)

Thrombus in the superior vena cava, probably associated with a catheter, as seen from mid esophageal bicaval view, (multiplane angle 99°) (MPG 6592 kb)

Thrombus in the left atrial appendage, as viewed from a modified mid esophageal aortic valve short axis view with leftward rotation. There are mobile filamentous strands arising from the thrombus. AoV aortic valve, LA left atrium. Video courtesy of Siemens Medical Systems USA, Inc. © 2012–13 Siemens Medical Solutions USA, Inc. All Rights Reserved (MPG 5100 kb)

Example of spontaneous echo contrast in a patient after repair of D-transposition of the great arteries, with a pseudoaneurysm arising from a previous cannulation site in the aorta. Video obtained from the upper esophageal ascending aorta long axis view. Note the visible swirling of flow due to red cell aggregation. The left pulmonary artery is being compressed by the pseudoaneurysm (MPG 6956 kb)

Wilm’s tumor (arrow) invading the right atrium by direct extension from the inferior vena cava, as seen from the mid esophageal bicaval view, multiplane angle 113°. The multiplane angle is rotated to 55° and all four chambers are visualized. The tumor obstructs IVC inflow. At the end of the video, the extracted tumor is shown (MPG 10052 kb)

Multiple rhabdomyomas in a patient with tuberous sclerosis, including one that caused near complete obstruction of the left ventricular outflow tract. Mid esophageal four chamber view, multiplane angle 0° shows a large tumor in the outflow tract. Turbulent color flow Doppler is seen (MPG 22644 kb)

Fibroma attached to the left ventricular free wall, visualized from mid esophageal aortic valve long axis view, multiplane angle 90°. The fibroma is very large, circumscribed, and has a heterogeneous appearance, studded with echolucent areas most likely representing cystic degeneration or necrosis (MPG 19366 kb)

Left atrial myxoma, seen from mid esophageal four chamber view, multiplane angle 0°. A large, lobulated myxoma is attached to the left atrial wall, just posterior to the aortic root. Multiple fimbriations of the tumor are freely mobile (MPG 17046 kb)

Right atrial hemangioma as seen from the mid esophageal four chamber and mid esophageal right ventricular inflow-outflow view. Note the heterogeneous nature of the large mass in the right atrium. As can be seen by the rapid atrial rate, the patient had an atrial arrhythmia, probably chaotic atrial tachycardia, during the study (MPG 21928 kb)

Prosthetic mitral valve (bileaflet tilting disk). Mid esophageal mitral commissural view, multiplane angle 69°. The multiplane angle is rotated until both leaflets are profiled and open symmetrically in diastole. There is the usual color flow Doppler profile across the valve (MPG 2942 kb)

Prosthetic mitral with a frozen leaflet (arrow), causing stenosis of the valve. Mid esophageal four chamber view, multiplane angle 0° (MPG 11380 kb)

Concentric pannus formation (arrows) above the mitral valve prosthesis, causing significant supravalvar narrowing, seen during diastole. Mid esophageal mitral commissural view, multiplane angle 58° (MPG 12516 kb)

Prosthetic aortic valve (bileaflet tilting disk) viewed from deep transgastric position. At a multiplane angle of 25° the valve is seen from the side, and the usual peri-valvar washing jets can be seen by color flow Doppler. The multiplane angle is then rotated until both leaflets are profiled and symmetric leaflet motion is noted in diastole and systole (about 95°). This view affords a good edge-on view of leaflet motion and flow across the valve, and also provides an excellent angle for spectral Doppler evaluation (MPG 13948 kb)

Paravalvar regurgitation in a child who underwent mitral valve replacement with a mechanical bileaflet prosthesis (the patient previously underwent repair of an atrioventricular septal defect). This video was obtained from a mid esophageal four chamber view. The prosthesis was too large for the annulus and required insertion at an angle, which resulted both in a large area of paravalvular regurgitation (seen to the left of the prosthesis) as well as a very small effective orifice (MPG 13054 kb)

Transcatheter aortic valve replacement/implantation (TAVR/TAVI). This video, obtained from a mid esophageal aortic valve long axis view at 120°–130° first shows the abnormal aortic, which is thickened and has restricted motion. A catheter and then the balloon-mounted valve are seen, with the balloon shown as it is expanded and the valve implanted in the aortic position. During balloon dilation, rapid ventricular pacing is performed to reduce ventricular ejection, thereby stabilizing the valve for placement. Following valve implantation, leaflet motion is seen and there rare two jets of regurgitation seen—one central (transvalvular), one peripheral (paravalvular). LM left main coronary artery (Echocardiographic images were obtained from a Siemens SC 2000 platform and are courtesy of Siemens Medical Systems USA, Inc. © 2012–13 Siemens Medical Solutions USA, Inc. All Rights Reserved) (MPG 39428 kb)

Berlin Heart placement in a patient with dilated cardiomyopathy. Mid esophageal four chamber view. The cannula in the left ventricular apex withdraws blood returning from the left atrium. When the blood has sufficiently filled the chamber in the device, it is pumped into the ascending aorta, as shown from mid esophageal view, multiplane angle 102° (MPG 36604 kb)

Following heart transplantation, imaging in the mid esophageal four chamber view, multiplane angle 0°. The anastomosis of the donor left atrium to the cuff of the recipient left atrium creates an area of echogenicity (arrow) that can be mistaken for thrombus (MPG 29690 kb)

Post-lung transplant, with thrombosis of the right pulmonary veins due to a large lymph node. Mid esophageal view, multiplane angle 0°. There is extensive thrombus in the right pulmonary veins. No flow was seen in the vessel by color flow Doppler. Normal flow is seen in the contralateral left pulmonary veins (MPG 17500 kb)

Dissection of the ascending and descending aorta (DeBakey Type I) in a patient with Marfan’s syndrome. The patient also had a dilated aortic root and significant aortic valve regurgitation. The intimal flap is clearly seen, as well as the true and false lumens. Upper esophageal aortic arch long axis view, multiplane angle 0°, shows the false lumen to be much larger than the true lumen in the ascending aorta and aortic arch. Retrograde diastolic flow reversal is seen only in the true lumen by color flow mapping. Mid esophageal descending aortic long axis view, multiplane angle 90° (probe rotated leftward) shows the dissection extending into descending aorta (MPG 56434 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Wong, P.C. (2014). Additional Applications of Transesophageal Echocardiography. In: Wong, P., Miller-Hance, W. (eds) Transesophageal Echocardiography for Congenital Heart Disease. Springer, London. https://doi.org/10.1007/978-1-84800-064-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-064-3_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-061-2

  • Online ISBN: 978-1-84800-064-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics