Skip to main content

Analytical Techniques for Evaluating Protein Instability at Interfaces

  • Chapter
  • First Online:
Protein Instability at Interfaces During Drug Product Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 43))

  • 872 Accesses

Abstract

Proteins at interfaces present a number of analytical challenges, particularly in the context of biotherapeutic formulations. Proteins typically adsorb to interfaces in thin films or monolayers while being present at high concentrations in the bulk liquid, making sensitivity to behavior directly at the interface an important feature. Additionally, there are multiple timescales of interest, from milliseconds to days, meaning the analytical techniques for probing interfacial behavior need to be adaptable with respect to time resolution. Also, biotherapeutic formulations are usually multicomponent systems, so the techniques need to distinguish between the behavior of the therapeutic protein and other surface-active excipients included to stabilize the protein (e.g., polysorbates and poloxamers). Finally, proteins form amorphous films at interfaces that make traditional interfacial techniques, usually applied to lipids and other well-defined surfactants, less sensitive to structural changes in protein films.

In this chapter, we discuss the strengths and weaknesses of a multitude of interfacial techniques and how these have been applied to understand protein instability at interfaces. First, we examine the multitude of techniques for measuring protein adsorption to interfaces including surface tensiometry, microscopy, and interferometry. Next, we give an overview of rheological tools for evaluating interfacial stresses in protein films. Finally, we discuss a number of spectroscopic techniques for measuring protein structure and conformation within interfacial films. In each section, we review how these various techniques have been employed to understand the dynamics of protein adsorption, unfolding, and aggregation at interfaces and how they could aid in reducing the impact of interfacial stresses during the development of biotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

ATR-FTIR:

Attenuated total reflection Fourier transform infrared spectroscopy

BAM:

Brewster angle microscopy

BLI:

Bio-layer interferometry

DPI:

Dual polarization interferometry

FRAP:

Fluorescence recovery after photobleaching

FRET:

Förster resonance energy transfer

IgG:

Immunoglobulin G

IRRAS:

Infrared reflectance absorption spectroscopy

IRSE:

Infrared spectroscopic ellipsometry

IV:

Intravenous

mAb:

Monoclonal antibody

NR:

Neutron reflection

OWLS:

Optical waveguide lightmode spectroscopy

PM:

Polarization modulated

Q:

Wave vector transfer

QCM-D:

Quartz crystal microbalance with dissipation monitoring

SFG:

Sum frequency generation

SPR:

Surface plasmon resonance

TIRF:

Total internal reflection fluorescence

XRR:

X-ray reflectivity

Δ:

Wave phase angle

Ψ:

Wave amplitude difference

References

  1. Buijs J, Lichtenbelt JWT, Norde W, Lyklema J. Adsorption of monoclonal IgGs and their F(ab′)2 fragments onto polymeric surfaces. Colloids Surf B Biointerfaces. 1995;5:11–23. https://doi.org/10.1016/0927-7765(95)98205-2.

    Article  CAS  Google Scholar 

  2. Wiseman ME, Frank CW. Antibody adsorption and orientation on hydrophobic surfaces. Langmuir. 2012;28:1765–74. https://doi.org/10.1021/la203095p.

    Article  CAS  PubMed  Google Scholar 

  3. Uchiyama S. Liquid formulation for antibody drugs. Biochim Biophys Acta. 2014;1844:2041–52. https://doi.org/10.1016/j.bbapap.2014.07.016.

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Krause ME, Chen X, et al. Interfacial stress in the development of biologics: fundamental understanding, current practice, and future perspective. AAPS J. 2019;21:44. https://doi.org/10.1208/s12248-019-0312-3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sreedhara A, Glover ZK, Piros N, et al. Stability of IgG1 monoclonal antibodies in intravenous infusion bags under clinical in-use conditions. J Pharm Sci. 2012;101:21–30. https://doi.org/10.1002/jps.22739.

    Article  CAS  PubMed  Google Scholar 

  6. Kiese S, Papppenberger A, Friess W, Mahler H-C. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97:4347–66. https://doi.org/10.1002/jps.21328.

    Article  CAS  PubMed  Google Scholar 

  7. Biddlecombe JG, Craig AV, Zhang H, et al. Determining antibody stability: creation of solid-liquid interfacial effects within a high shear environment. Biotechnol Prog. 2007;23:1218–22. https://doi.org/10.1021/bp0701261.

    Article  CAS  PubMed  Google Scholar 

  8. Gikanga B, Chen Y, Stauch OB, Maa Y-F. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality. PDA J Pharm Sci Technol. 2015;69:284–96.

    Article  CAS  Google Scholar 

  9. Gerhardt A, Mcgraw NR, Schwartz DK, et al. Protein aggregation and particle formation in prefilled glass syringes. J Pharm Sci. 2014;103:1601–12. https://doi.org/10.1002/jps.23973.

    Article  CAS  PubMed  Google Scholar 

  10. Jones LS, Kaufmann A, Middaugh CR. Silicone oil induced aggregation of proteins. J Pharm Sci. 2005;94:918–27. https://doi.org/10.1002/jps.20321.

    Article  CAS  PubMed  Google Scholar 

  11. Dhar P, Cao Y, Fischer TM, Zasadzinski JA. Active interfacial shear microrheology of aging protein films. Phys Rev Lett. 2010;104:016001. https://doi.org/10.1103/PhysRevLett.104.016001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith C, Li Z, Holman R, et al. Antibody adsorption on the surface of water studied by neutron reflection. mAbs. 2017;9:466–75. https://doi.org/10.1080/19420862.2016.1276141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Z, Li R, Smith C, et al. Neutron reflection study of surface adsorption of Fc, Fab, and the whole mAb. ACS Appl Mater Interfaces. 2017; https://doi.org/10.1021/acsami.7b06131,9,23202.

  14. Kannan A, Shieh IC, Fuller GG. Linking aggregation and interfacial properties in monoclonal antibody-surfactant formulations. J Colloid Interface Sci. 2019;550:128–38. https://doi.org/10.1016/j.jcis.2019.04.060.

    Article  CAS  PubMed  Google Scholar 

  15. Cowsill BJ, Waigh TA, Eapen S, et al. Interfacial structure and history dependent activity of immobilised antibodies in model pregnancy tests. Soft Matter. 2012;8:9847–54. https://doi.org/10.1039/C2SM26133B.

    Article  CAS  Google Scholar 

  16. Shieh IC, Patel AR. Predicting the agitation-induced aggregation of monoclonal antibodies using surface tensiometry. Mol Pharm. 2015;12:3184–93. https://doi.org/10.1021/acs.molpharmaceut.5b00089.

    Article  CAS  PubMed  Google Scholar 

  17. Patapoff TW, Esue O. Polysorbate 20 prevents the precipitation of a monoclonal antibody during shear. Pharm Dev Technol. 2009;14:659–64. https://doi.org/10.3109/10837450902911929.

    Article  CAS  PubMed  Google Scholar 

  18. Makievski AV, Fainerman VB, Bree M, et al. Adsorption of proteins at the liquid/air interface. J Phys Chem B. 1998;102:417–25. https://doi.org/10.1021/jp9725036.

    Article  CAS  Google Scholar 

  19. Zell ZA, Choi SQ, Leal LG, Squires TM. Microfabricated deflection tensiometers for insoluble surfactants. Appl Phys Lett. 2010;97:133505. https://doi.org/10.1063/1.3491549.

    Article  CAS  Google Scholar 

  20. Zell ZA, Isa L, Ilg P, et al. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air–water surface. Langmuir. 2014;30:110–9. https://doi.org/10.1021/la404233a.

    Article  CAS  PubMed  Google Scholar 

  21. Rodahl M, Höök F, Fredriksson C, et al. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss. 1997;107:229–46. https://doi.org/10.1039/A703137H.

    Article  CAS  Google Scholar 

  22. Voinova MV, Rodahl M, Jonson M, Kasemo B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr. 1999;59:391. https://doi.org/10.1238/Physica.Regular.059a00391.

    Article  CAS  Google Scholar 

  23. Wiseman ME. Antibody adsorption at the silicone oil-water interface: exploring the strengths and limitations of the quartz crystal microbalance technique: Stanford University; 2012.

    Google Scholar 

  24. Li J, Pinnamaneni S, Quan Y, et al. Mechanistic understanding of protein-silicone oil interactions. Pharm Res. 2012;29:1689–97. https://doi.org/10.1007/s11095-012-0696-6.

    Article  CAS  PubMed  Google Scholar 

  25. Dixit N, Maloney KM, Kalonia DS. Protein-silicone oil interactions: comparative effect of nonionic surfactants on the interfacial behavior of a fusion protein. Pharm Res. 2013;30:1848–59. https://doi.org/10.1007/s11095-013-1028-1.

    Article  CAS  PubMed  Google Scholar 

  26. Nirschl M, Reuter F, Vörös J. Review of transducer principles for label-free biomolecular interaction analysis. Biosensors. 2011;1:70–92. https://doi.org/10.3390/bios1030070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen L, Guo A, Zhu X. Tween surfactants: adsorption, self-organization, and protein resistance. Surf Sci. 2011;605:494–9. https://doi.org/10.1016/j.susc.2010.12.005.

    Article  CAS  Google Scholar 

  28. Abdiche Y, Malashock D, Pinkerton A, Pons J. Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the octet. Anal Biochem. 2008;377:209–17.

    Article  CAS  Google Scholar 

  29. Ramadan MH, Prata JE, Karácsony O, et al. Reducing protein adsorption with polymer-grafted hyaluronic acid coatings. Langmuir. 2014;30:7485–95. https://doi.org/10.1021/la500918p.

    Article  CAS  PubMed  Google Scholar 

  30. Höök F, Vörös J, Rodahl M, et al. A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf B Biointerfaces. 2002;24:155–70. https://doi.org/10.1016/S0927-7765(01)00236-3.

    Article  Google Scholar 

  31. Cross GH, Reeves AA, Brand S, et al. A new quantitative optical biosensor for protein characterisation. Biosens Bioelectron. 2003;19:383–90. https://doi.org/10.1016/S0956-5663(03)00203-3.

    Article  CAS  PubMed  Google Scholar 

  32. Kim HL, Mcauley A, Livesay B, et al. Modulation of protein adsorption by poloxamer 188 in relation to polysorbates 80 and 20 at solid surfaces. J Pharm Sci. 2014;103:1043–9. https://doi.org/10.1002/jps.23907.

    Article  CAS  PubMed  Google Scholar 

  33. Shieh IC, Waring AJ, Zasadzinski JA. Visualizing the analogy between competitive adsorption and colloid stability to restore lung surfactant function. Biophys J. 2012;102:777–86. https://doi.org/10.1016/j.bpj.2012.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leiske DL, Shieh IC, Tse ML. A method to measure protein unfolding at an air–liquid interface. Langmuir. 2016;32:9930–7. https://doi.org/10.1021/acs.langmuir.6b02267.

    Article  CAS  PubMed  Google Scholar 

  35. Walder R, Schwartz DK. Dynamics of protein aggregation at the oil-water interface characterized by single molecule TIRF microscopy. Soft Matter. 2011;7:7616–22. https://doi.org/10.1039/C1SM05232B.

    Article  CAS  Google Scholar 

  36. Faulón Marruecos D, Schwartz DK, Kaar JL. Impact of surface interactions on protein conformation. Curr Opin Colloid Interface Sci. 2018;38:45–55. https://doi.org/10.1016/j.cocis.2018.08.002.

    Article  CAS  Google Scholar 

  37. Hénon S, Meunier J. Microscope at the Brewster angle: direct observation of first-order phase transitions in monolayers. Rev Sci Instrum. 1991;62:936–9.

    Article  Google Scholar 

  38. Koepf E, Richert M, Braunschweig B, et al. Impact of formulation pH on physicochemical protein characteristics at the liquid-air interface. Int J Pharm. 2018;541:234–45. https://doi.org/10.1016/j.ijpharm.2018.02.009.

    Article  CAS  PubMed  Google Scholar 

  39. Fuller GG, Vermant J. Complex fluid-fluid interfaces: rheology and structure. Annu Rev Chem Biomol Eng. 2012;3:519–43. https://doi.org/10.1146/annurev-chembioeng-061010-114202.

    Article  CAS  PubMed  Google Scholar 

  40. Sorret LL, DeWinter MA, Schwartz DK, Randolph TW. Protein–protein interactions controlling interfacial aggregation of rhIL-1ra are not described by simple colloid models. Protein Sci. n/a:n/a. https://doi.org/10.1002/pro.3382,27,1191.

  41. Lin GL, Pathak JA, Kim DH, et al. Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions. Soft Matter. 2016; https://doi.org/10.1039/C5SM02830B,12,3293.

  42. Choi SQ, Steltenkamp S, Zasadzinski JA, Squires TM. Active microrheology and simultaneous visualization of sheared phospholipid monolayers. Nat Commun. 2011;2:312. https://doi.org/10.1038/ncomms1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim K, Choi SQ, Zasadzinski JA, Squires TM. Interfacial microrheology of DPPC monolayers at the air-water interface. Soft Matter. 2011;7:7782–9. https://doi.org/10.1039/C1SM05383C.

    Article  CAS  Google Scholar 

  44. Frostad JM, Tammaro D, Santollani L, et al. Dynamic fluid-film interferometry as a predictor of bulk foam properties. Soft Matter. 2016;12:9266–79. https://doi.org/10.1039/c6sm01361a.

    Article  CAS  PubMed  Google Scholar 

  45. Kannan A, Shieh IC, Leiske DL, Fuller GG. Monoclonal antibody interfaces: dilatation mechanics and bubble coalescence. Langmuir. 2017;34:630–8. https://doi.org/10.1021/acs.langmuir.7b03790.

    Article  CAS  Google Scholar 

  46. Koepf E, Eisele S, Schroeder R, et al. Notorious but not understood: how liquid-air interfacial stress triggers protein aggregation. Int J Pharm. 2018;537:202–12. https://doi.org/10.1016/j.ijpharm.2017.12.043.

    Article  CAS  PubMed  Google Scholar 

  47. Ghazvini S, Kalonia C, Volkin DB, Dhar P. Evaluating the role of the air-solution interface on the mechanism of subvisible particle formation caused by mechanical agitation for an IgG1 mAb. J Pharm Sci. 2016;105:1643–56. https://doi.org/10.1016/j.xphs.2016.02.027.

    Article  CAS  PubMed  Google Scholar 

  48. Goyal DK, Pribil GK, Woollam JA, Subramanian A. Detection of ultrathin biological films using vacuum ultraviolet spectroscopic ellipsometry. Mater Sci Eng B. 2008;149:26–33.

    Article  CAS  Google Scholar 

  49. Tiberg F, Joensson B, Tang J, Lindman B. Ellipsometry studies of the self-assembly of nonionic surfactants at the silica-water interface: equilibrium aspects. Langmuir. 1994;10:2294–300.

    Article  CAS  Google Scholar 

  50. Nabok A, Tsargorodskaya A, Davis F, Higson SPJ. The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosens Bioelectron. 2007;23:377–83.

    Article  CAS  Google Scholar 

  51. Kroning A, Furchner A, Aulich D, et al. In situ infrared ellipsometry for protein adsorption studies on ultrathin smart polymer brushes in aqueous environment. ACS Appl Mater Interfaces. 2015;7:12430–9.

    Article  CAS  Google Scholar 

  52. Li Z. Interfacial adsorption of monoclonal antibody: a combined study of spectroscopic ellipsometry and neutron reflection: The University of Manchester; 2017.

    Google Scholar 

  53. Campana M, Hosking SL, Petkov JT, et al. Adsorption of bovine serum albumin (BSA) at the oil/water interface: a neutron reflection study. Langmuir. 2015;31:5614–22.

    Article  CAS  Google Scholar 

  54. Ruane S, Li Z, Campana M, et al. Interfacial adsorption of a monoclonal antibody and its fab and fc fragments at the oil/water interface. Langmuir. 2019;35:13543.

    Article  CAS  Google Scholar 

  55. Xu H, Zhao X, Grant C, et al. Orientation of a monoclonal antibody adsorbed at the solid/solution interface: a combined study using atomic force microscopy and neutron reflectivity. Langmuir. 2006;22:6313–20.

    Article  CAS  Google Scholar 

  56. Lavoie H, Desbat B, Vaknin D, Salesse C. Structure of rhodopsin in monolayers at the air− water interface: a PM-IRRAS and X-ray reflectivity study. Biochemistry. 2002;41:13424–34.

    Article  CAS  Google Scholar 

  57. Evers F, Shokuie K, Paulus M, et al. Characterizing the structure of protein layers adsorbed onto functionalized surfaces by means of in-situ X-ray reflectivity. Eur Phys J Spec Top. 2009;167:185–9. https://doi.org/10.1140/epjst/e2009-00956-1.

    Article  Google Scholar 

  58. Richter AG, Kuzmenko I. Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces: benefits and limitations. Langmuir. 2013;29:5167–80.

    Article  CAS  Google Scholar 

  59. Wang J, Paszti Z, Even MA, Chen Z. Interpretation of sum frequency generation vibrational spectra of interfacial proteins by the thin film model. J Phys Chem B. 2004;108:3625–32.

    Article  CAS  Google Scholar 

  60. Chen X, Wang J, Sniadecki JJ, et al. Probing α-helical and β-sheet structures of peptides at solid/liquid interfaces with SFG. Langmuir. 2005;21:2662–4.

    Article  CAS  Google Scholar 

  61. Weidner T, Castner DG. SFG analysis of surface bound proteins: a route towards structure determination. Phys Chem Phys. 2013;15:12516–24.

    Article  CAS  Google Scholar 

  62. Yan ECY, Wang Z, Fu L. Proteins at interfaces probed by chiral vibrational sum frequency generation spectroscopy. J Phys Chem B. 2015;119:2769–85.

    Article  CAS  Google Scholar 

  63. Fu L, Ma G, Yan ECY. In situ misfolding of human islet amyloid polypeptide at interfaces probed by vibrational sum frequency generation. J Am Chem Soc. 2010;132:5405–12.

    Article  CAS  Google Scholar 

  64. Fu L, Liu J, Yan ECY. Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces. J Am Chem Soc. 2011;133:8094–7.

    Article  CAS  Google Scholar 

  65. Fu L, Wang Z, Yan ECY. Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy. Int J Mol Sci. 2011;12:9404–25.

    Article  CAS  Google Scholar 

  66. Fu L, Wang Z, Yan ECY. N-H stretching modes around 3300 wavenumber from peptide backbones observed by chiral sum frequency generation vibrational spectroscopy. Chirality. 2014;26:521–4.

    Article  CAS  Google Scholar 

  67. Sackett DL, Wolff J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal Biochem. 1987;167:228–34.

    Article  CAS  Google Scholar 

  68. Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res. 2008;25:1487–99. https://doi.org/10.1007/s11095-007-9516-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dluhy RA, Cornell DG. In situ measurement of the infrared spectra of insoluble monolayers at the air-water interface. J Phys Chem. 1985;89:3195–7.

    Article  CAS  Google Scholar 

  70. Meinders MB, van den Bosch GG, de Jongh HH. Adsorption properties of proteins at and near the air/water interface from IRRAS spectra of protein solutions. Eur Biophys J. 2001;30:256–67.

    Article  CAS  Google Scholar 

  71. Meinders MBJ, De Jongh HHJ. Limited conformational change of β-lactoglobulin when adsorbed at the air–water interface. Biopolym Orig Res Biomol. 2002;67:319–22.

    Google Scholar 

  72. Martin AH, Meinders MBJ, Bos MA, et al. Conformational aspects of proteins at the air/water interface studied by infrared reflection− absorption spectroscopy. Langmuir. 2003;19:2922–8.

    Article  CAS  Google Scholar 

  73. Desroches MJ, Chaudhary N, Omanovic S. PM-IRRAS investigation of the interaction of serum albumin and fibrinogen with a biomedical-grade stainless steel 316LVM surface. Biomacromolecules. 2007;8:2836–44.

    Article  CAS  Google Scholar 

  74. Chittur KK. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials. 1998;19:357–69.

    Article  CAS  Google Scholar 

  75. Déjardin P. Proteins at solid-liquid interfaces: Springer; 2006.

    Google Scholar 

  76. Sethuraman A, Vedantham G, Imoto T, et al. Protein unfolding at interfaces: slow dynamics of α-helix to β-sheet transition. Proteins Struct Funct Bioinforma. 2004;56:669–78.

    Article  CAS  Google Scholar 

  77. Mudunkotuwa IA, Al Minshid A, Grassian VH. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media. Analyst. 2014;139:870–81.

    Article  CAS  Google Scholar 

  78. Kim J, Somorjai GA. Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared−visible sum frequency generation and fluorescence microscopy. J Am Chem Soc. 2003;125:3150–8. https://doi.org/10.1021/ja028987n.

    Article  CAS  PubMed  Google Scholar 

  79. Liao Z, Lampe JW, Ayyaswamy PS, et al. Protein assembly at the air-water interface studied by fluorescence microscopy. Langmuir. 2011;27:12775–81. https://doi.org/10.1021/la203053g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cullen DC, Lowe CR. AFM studies of protein adsorption: 1 Time-resolved protein adsorption to highly oriented pyrolytic graphite. J Colloid Interface Sci. 1994;166:102–8.

    Article  CAS  Google Scholar 

  81. Hlady V, Buijs J. Protein adsorption on solid surfaces. Curr Opin Biotechnol. 1996;7:72–7.

    Article  CAS  Google Scholar 

  82. Browne MM, Lubarsky GV, Davidson MR, Bradley RH. Protein adsorption onto polystyrene surfaces studied by XPS and AFM. Surf Sci. 2004;553:155–67.

    Article  CAS  Google Scholar 

  83. Mackie AR, Gunning AP, Wilde PJ, Morris VJ. Orogenic displacement of protein from the air/water interface by competitive adsorption. J Colloid Interface Sci. 1999;210:157–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Shieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shieh, I.C., Cheng, Y. (2021). Analytical Techniques for Evaluating Protein Instability at Interfaces. In: Li, J., Krause, M.E., Tu, R. (eds) Protein Instability at Interfaces During Drug Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-57177-1_7

Download citation

Publish with us

Policies and ethics