Skip to main content

Natural Killer Cell Defects

  • Chapter
  • First Online:
Primary and Secondary Immunodeficiency

Abstract

Natural killer (NK) cells are innate lymphocytes that play an essential role in immune defense against viral infections and in tumor surveillance. Primary immunodeficiency disorders (PIDDs) result from genetic abnormalities leading to immune dysregulation and/or immune impairment. In this review we discuss disorders in which NK cell dysfunction is the primary abnormality, as well as disorders in which NK cell dysfunction is one of the features. We provide a framework for evaluating patient with suspected NK cell disorders and strategies for management of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.

    Article  CAS  PubMed  Google Scholar 

  2. Gregoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, et al. The trafficking of natural killer cells. Immunol Rev. 2007;220:169–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benson DM Jr, Yu J, Becknell B, Wei M, Freud AG, Ferketich AK, et al. Stem cell factor and interleukin-2/15 combine to enhance MAPK-mediated proliferation of human natural killer cells. Blood. 2009;113(12):2706–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Angelo LS, Banerjee PP, Monaco-Shawver L, Rosen JB, Makedonas G, Forbes LR, et al. Practical NK cell phenotyping and variability in healthy adults. Immunol Res. 2015;62(3):341–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryceson YT, Long EO. Line of attack: NK cell specificity and integration of signals. Curr Opin Immunol. 2008;20(3):344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marcenaro E, Notarangelo LD, Orange JS, Vivier E. Editorial: NK cell subsets in health and disease: new developments. Front Immunol. 2017;8:1363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Watzl C, Long EO. Signal transduction during activation and inhibition of natural killer cells. Curr Protoc Immunol. 2010;Chapter 11:Unit 11 9B.

    Google Scholar 

  8. Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2018;38(1):129–43.

    Article  PubMed  Google Scholar 

  9. Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev. 2019;287(1):202–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989;320(26):1731–5.

    Article  CAS  PubMed  Google Scholar 

  11. Mace EM, Hsu AP, Monaco-Shawver L, Makedonas G, Rosen JB, Dropulic L, et al. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56(bright) subset. Blood. 2013;121(14):2669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018;9:1869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mace EM, Orange JS. Genetic causes of human NK cell deficiency and their effect on NK cell subsets. Front Immunol. 2016;7:545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, Haniffa M, et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood. 2011;118(10):2656–8.

    Article  CAS  PubMed  Google Scholar 

  15. Lopez-Soto A, Lorenzo-Herrero S, Gonzalez S. Biallelic IRF8 mutations causing NK cell deficiency. Trends Mol Med. 2017;23(3):195–7.

    Article  CAS  PubMed  Google Scholar 

  16. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med. 2011;365(2):127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest. 2012;122(3):821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cottineau J, Kottemann MC, Lach FP, Kang YH, Vely F, Deenick EK, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127(5):1991–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hanna S, Beziat V, Jouanguy E, Casanova JL, Etzioni A. A homozygous mutation of RTEL1 in a child presenting with an apparently isolated natural killer cell deficiency. J Allergy Clin Immunol. 2015;136(4):1113–4.

    Article  CAS  PubMed  Google Scholar 

  20. Mace EM, Dongre P, Hsu HT, Sinha P, James AM, Mann SS, et al. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunol Cell Biol. 2014;92(3):245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221–6.

    Article  CAS  PubMed  Google Scholar 

  22. Kazenwadel J, Secker GA, Liu YJ, Rosenfeld JA, Wildin RS, Cuellar-Rodriguez J, et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood. 2012;119(5):1283–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Novakova M, Zaliova M, Sukova M, Wlodarski M, Janda A, Fronkova E, et al. Loss of B cells and their precursors is the most constant feature of GATA-2 deficiency in childhood myelodysplastic syndrome. Haematologica. 2016;101(6):707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hughes CR, Guasti L, Meimaridou E, Chuang CH, Schimenti JC, King PJ, et al. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest. 2012;122(3):814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamura T, Kurotaki D, Koizumi S. Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol. 2015;101(4):342–51.

    Article  CAS  PubMed  Google Scholar 

  27. Shukla V, Lu R. IRF4 and IRF8: governing the virtues of B lymphocytes. Front Biol (Beijing). 2014;9(4):269–82.

    Article  CAS  Google Scholar 

  28. Adams NM, Lau CM, Fan X, Rapp M, Geary CD, Weizman OE, et al. Transcription factor IRF8 orchestrates the adaptive natural killer cell response. Immunity. 2018;48(6):1172–82 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fleisher G, Starr S, Koven N, Kamiya H, Douglas SD, Henle W. A non-x-linked syndrome with susceptibility to severe Epstein-Barr virus infections. J Pediatr. 1982;100(5):727–30.

    Article  CAS  PubMed  Google Scholar 

  30. Mace EM, Bigley V, Gunesch JT, Chinn IK, Angelo LS, Care MA, et al. Biallelic mutations in IRF8 impair human NK cell maturation and function. J Clin Invest. 2017;127(1):306–20.

    Article  PubMed  Google Scholar 

  31. Vannier JB, Sarek G, Boulton SJ. RTEL1: functions of a disease-associated helicase. Trends Cell Biol. 2014;24(7):416–25.

    Article  CAS  PubMed  Google Scholar 

  32. de Vries E, Koene HR, Vossen JM, Gratama JW, von dem Borne AE, Waaijer JL, et al. Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood. 1996;88(8):3022–7.

    Article  PubMed  Google Scholar 

  33. Grier JT, Forbes LR, Monaco-Shawver L, Oshinsky J, Atkinson TP, Moody C, et al. Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest. 2012;122(10):3769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tholouli E, Sturgess K, Dickinson RE, Gennery A, Cant AJ, Jackson G, et al. In vivo T-depleted reduced-intensity transplantation for GATA2-related immune dysfunction. Blood. 2018;131(12):1383–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhattacharyya R, Tan AM, Chan MY, Jamuar SS, Foo R, Iyer P. TCR alphabeta and CD19-depleted haploidentical stem cell transplant with reduced intensity conditioning for Hoyeraal-Hreidarsson syndrome with RTEL1 mutation. Bone Marrow Transplant. 2016;51(5):753–4.

    Article  CAS  PubMed  Google Scholar 

  36. Buckley RH, Schiff RI, Schiff SE, Markert ML, Williams LW, Harville TO, et al. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr. 1997;130(3):378–87.

    Article  CAS  PubMed  Google Scholar 

  37. Pannicke U, Honig M, Hess I, Friesen C, Holzmann K, Rump EM, et al. Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet. 2009;41(1):101–5.

    Article  CAS  PubMed  Google Scholar 

  38. Puck JM. Neonatal screening for severe combined immunodeficiency. Curr Opin Pediatr. 2011;23(6):667–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blott EJ, Griffiths GM. Secretory lysosomes. Nat Rev Mol Cell Biol. 2002;3(2):122–31.

    Article  CAS  PubMed  Google Scholar 

  40. Blundell MP, Worth A, Bouma G, Thrasher AJ. The Wiskott-Aldrich syndrome: the actin cytoskeleton and immune cell function. Dis Markers. 2010;29(3–4):157–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Orange JS, Ramesh N, Remold-O’Donnell E, Sasahara Y, Koopman L, Byrne M, et al. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc Natl Acad Sci U S A. 2002;99(17):11351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aldrich RA, Steinberg AG, Campbell DC. Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics. 1954;13(2):133–9.

    CAS  PubMed  Google Scholar 

  43. Chiang SCC, Vergamini SM, Husami A, Neumeier L, Quinn K, Ellerhorst T, et al. Screening for Wiskott-Aldrich syndrome by flow cytometry. J Allergy Clin Immunol. 2018;142(1):333–5 e8.

    Article  PubMed  Google Scholar 

  44. Maul-Pavicic A, Chiang SC, Rensing-Ehl A, Jessen B, Fauriat C, Wood SM, et al. ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc Natl Acad Sci U S A. 2011;108(8):3324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441(7090):179–85.

    Article  CAS  PubMed  Google Scholar 

  46. Lougaris V, Patrizi O, Baronio M, Tabellini G, Tampella G, Damiati E, et al. NFKB1 regulates human NK cell maturation and effector functions. Clin Immunol. 2017;175:99–108.

    Article  CAS  PubMed  Google Scholar 

  47. Lougaris V, Tabellini G, Vitali M, Baronio M, Patrizi O, Tampella G, et al. Defective natural killer-cell cytotoxic activity in NFKB2-mutated CVID-like disease. J Allergy Clin Immunol. 2015;135(6):1641–3.

    Article  CAS  PubMed  Google Scholar 

  48. Orange JS, Jain A, Ballas ZK, Schneider LC, Geha RS, Bonilla FA. The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol. 2004;113(4):725–33.

    Article  CAS  PubMed  Google Scholar 

  49. Orange JS, Brodeur SR, Jain A, Bonilla FA, Schneider LC, Kretschmer R, et al. Deficient natural killer cell cytotoxicity in patients with IKK-gamma/NEMO mutations. J Clin Invest. 2002;109(11):1501–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jordan MB, Allen CE, Weitzman S, Filipovich AH, McClain KL. How I treat hemophagocytic lymphohistiocytosis. Blood. 2011;118(15):4041–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chinn IK, Eckstein OS, Peckham-Gregory EC, Goldberg BR, Forbes LR, Nicholas SK, et al. Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood. 2018;132(1):89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stepp SE, Dufourcq-Lagelouse R, Kumar V. Pillars article: perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286:1957–9. J Immunol. 2015;194(11):5044–6.

    CAS  PubMed  Google Scholar 

  53. Rudd E, Bryceson YT, Zheng C, Edner J, Wood SM, Ramme K, et al. Spectrum, and clinical and functional implications of UNC13D mutations in familial haemophagocytic lymphohistiocytosis. J Med Genet. 2008;45(3):134–41.

    Article  CAS  PubMed  Google Scholar 

  54. Zur Stadt U, Beutel K, Kolberg S, Schneppenheim R, Kabisch H, Janka G, et al. Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A. Hum Mutat. 2006;27(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  55. Marsh RA, Haddad E. How I treat primary haemophagocytic lymphohistiocytosis. Br J Haematol. 2018;182(2):185–99.

    Article  PubMed  Google Scholar 

  56. Cichorek M, Wachulska M, Stasiewicz A, Tyminska A. Skin melanocytes: biology and development. Postepy Dermatol Alergol. 2013;30(1):30–41.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Karim MA, Suzuki K, Fukai K, Oh J, Nagle DL, Moore KJ, et al. Apparent genotype-phenotype correlation in childhood, adolescent, and adult Chediak-Higashi syndrome. Am J Med Genet. 2002;108(1):16–22.

    Article  PubMed  Google Scholar 

  58. Meeths M, Bryceson YT, Rudd E, Zheng C, Wood SM, Ramme K, et al. Clinical presentation of Griscelli syndrome type 2 and spectrum of RAB27A mutations. Pediatr Blood Cancer. 2010;54(4):563–72.

    Article  PubMed  Google Scholar 

  59. Dell’Acqua F, Saettini F, Castelli I, Badolato R, Notarangelo LD, Rizzari C. Hermansky-Pudlak syndrome type II and lethal hemophagocytic lymphohistiocytosis: case description and review of the literature. J Allergy Clin Immunol Pract. 2019;7(7):2476–8 e5.

    Article  PubMed  Google Scholar 

  60. Roberts JL, Lengi A, Brown SM, Chen M, Zhou YJ, O’Shea JJ, et al. Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation. Blood. 2004;103(6):2009–18.

    Article  CAS  PubMed  Google Scholar 

  61. Feske S, Picard C, Fischer A. Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol. 2010;135(2):169–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pai SY, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371(5):434–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mamcarz E, Zhou S, Lockey T, Abdelsamed H, Cross SJ, Kang G, et al. Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N Engl J Med. 2019;380(16):1525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pai SY, DeMartiis D, Forino C, Cavagnini S, Lanfranchi A, Giliani S, et al. Stem cell transplantation for the Wiskott-Aldrich syndrome: a single-center experience confirms efficacy of matched unrelated donor transplantation. Bone Marrow Transplant. 2006;38(10):671–9.

    Article  PubMed  Google Scholar 

  65. Filipovich AH, Stone JV, Tomany SC, Ireland M, Kollman C, Pelz CJ, et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood. 2001;97(6):1598–603.

    Article  CAS  PubMed  Google Scholar 

  66. Ozsahin H, Cavazzana-Calvo M, Notarangelo LD, Schulz A, Thrasher AJ, Mazzolari E, et al. Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation. Blood. 2008;111(1):439–45.

    Article  CAS  PubMed  Google Scholar 

  67. Hacein-Bey Abina S, Gaspar HB, Blondeau J, Caccavelli L, Charrier S, Buckland K, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA. 2015;313(15):1550–63.

    Article  PubMed  CAS  Google Scholar 

  68. Bergsten E, Horne A, Arico M, Astigarraga I, Egeler RM, Filipovich AH, et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood. 2017;130(25):2728–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vallurupalli M, Berliner N. Emapalumab for the treatment of relapsed/refractory hemophagocytic lymphohistiocytosis. Blood. 2019;134(21):1783–6.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Messina C, Zecca M, Fagioli F, Rovelli A, Giardino S, Merli P, et al. Outcomes of children with hemophagocytic lymphohistiocytosis given allogeneic hematopoietic stem cell transplantation in Italy. Biol Blood Marrow Transplant. 2018;24(6):1223–31.

    Article  PubMed  Google Scholar 

  71. Ostberg JR, Dayanc BE, Yuan M, Oflazoglu E, Repasky EA. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J Leukoc Biol. 2007;82(5):1322–31.

    Article  CAS  PubMed  Google Scholar 

  72. Lackovic V, Borecky L, Vigas M, Rovensky J. Activation of NK cells in subjects exposed to mild hyper- or hypothermic load. J Interf Res. 1988;8(3):393–402.

    Article  CAS  Google Scholar 

  73. Tsao TM, Tsai MJ, Hwang JS, Cheng WF, Wu CF, Chou CK, et al. Health effects of a forest environment on natural killer cells in humans: an observational pilot study. Oncotarget. 2018;9(23):16501–11.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bigley AB, Agha NH, Baker FL, Spielmann G, Kunz HE, Mylabathula PL, et al. NK cell function is impaired during long-duration spaceflight. J Appl Physiol (1985). 2019;126(4):842–53.

    Article  CAS  Google Scholar 

  75. Kim M, Kim M, Yoo HJ, Lee JH. Corrigendum: natural killer cell activity and interleukin-12 in metabolically healthy versus metabolically unhealthy overweight individuals. Front Immunol. 2018;9:2179.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Inoue C, Takeshita T, Kondo H, Morimoto K. Cigarette smoking is associated with the reduction of lymphokine-activated killer cell and natural killer cell activities. Environ Health Prev Med. 1996;1(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  77. Meehan AC, Mifsud NA, Nguyen TH, Levvey BJ, Snell GI, Kotsimbos TC, et al. Impact of commonly used transplant immunosuppressive drugs on human NK cell function is dependent upon stimulation condition. PLoS ONE. 2013;8(3):e60144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Orandi AB, Vogel TP, Keppel MP, Utterson EC, Cooper MA. Azathioprine-associated complete NK cell deficiency. J Clin Immunol. 2017;37(6):514–6.

    Article  PubMed  Google Scholar 

  79. Yusung S, McGovern D, Lin L, Hommes D, Lagishetty V, Braun J. NK cells are biologic and biochemical targets of 6-mercaptopurine in Crohn’s disease patients. Clin Immunol. 2017;175:82–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa R. Forbes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaimowitz, N.S., Forbes, L.R. (2021). Natural Killer Cell Defects. In: Bernstein, J.A. (eds) Primary and Secondary Immunodeficiency. Springer, Cham. https://doi.org/10.1007/978-3-030-57157-3_19

Download citation

Publish with us

Policies and ethics