Skip to main content

The Mammalian Target of Rapamycin Complex 1 (mTORC1): An Ally of M. tuberculosis in Host Cells

  • Chapter
  • First Online:
Advances in Host-Directed Therapies Against Tuberculosis

Abstract

The serine/threonine protein kinase mammalian target of rapamycin (mTOR) is a conserved member of the phosphoinositide 3-kinase (PI3K)-related kinase family. It is the key component of two distinct multi-subunit complexes called mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Besides mTOR, the catalytic subunit, the two complexes share two additional subunits: the mammalian lethal with Sec13 protein 8 (mLST8, also known as GβL), which stabilizes mTOR, and the DEP-domain-containing mTOR-interacting protein (Deptor), which inhibits mTOR. Moreover, mTORC1 is characterized by the presence of the regulatory-associated protein of mTOR (Raptor, also known as RPTOR), which is involved in mTORC1 localization and substrate recruitment, and the proline-rich AKT substrate of 40 kDa (PRAS40, also known as AKT1S1), an insulin-responsive mTORC1 inhibitor. mTORC2 contains mSIN1, Protor, and the rapamycin-insensitive companion of mTOR (Rictor), a protein that may have analogous function to Raptor. Among the most recent reviews on the structure and function of the two complexes, the reader is referred to [1]. The primary functions of mTORC1 and mTORC2 are distinct: mTORC1 controls cell growth, while mTORC2 controls cell survival and proliferation [2]. Here, we focus on mTORC1, which has been studied in the context of tuberculosis pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Another reason to take your statin (2001) Harvard heart letter: from Harvard Medical School. 11(6):6–7

    Google Scholar 

  2. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 169(2):361–371

    Article  CAS  PubMed  Google Scholar 

  3. Yang H, Jiang X, Li B, Yang HJ, Miller M, Yang A et al (2017) Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552(7685):368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Acosta-Jaquez HA, Keller JA, Foster KG, Ekim B, Soliman GA, Feener EP et al (2009) Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol Cell Biol 29(15):4308–4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rabanal-Ruiz Y, Korolchuk VI (2018) mTORC1 and nutrient homeostasis: the central role of the lysosome. Int J Mol Sci 19(3):818

    Article  PubMed Central  CAS  Google Scholar 

  6. Condon KJ, Sabatini DM (2019) Nutrient regulation of mTORC1 at a glance. J Cell Sci 132(21):jcs222570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Laplante M, Sabatini DM (2013) Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 126(Pt 8):1713–1719

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21(4):183–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamming DW, Sabatini DM (2013) A central role for mTOR in lipid homeostasis. Cell Metab 18(4):465–469

    Article  CAS  PubMed  Google Scholar 

  11. Lewis CA, Griffiths B, Santos CR, Pende M, Schulze A (2011) Regulation of the SREBP transcription factors by mTORC1. Biochem Soc Trans 39(2):495–499

    Article  CAS  PubMed  Google Scholar 

  12. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E et al (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146(3):408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7(12):885–896

    Article  CAS  PubMed  Google Scholar 

  14. Pyper SR, Viswakarma N, Yu S, Reddy JK (2010) PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal 8:e002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD (2016) mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science (New York, NY) 351(6274):728–733

    Article  CAS  Google Scholar 

  16. Ben-Sahra I, Howell JJ, Asara JM, Manning BD (2013) Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science (New York, NY) 339(6125):1323–1328

    Article  CAS  Google Scholar 

  17. Robitaille AM, Christen S, Shimobayashi M, Cornu M, Fava LL, Moes S et al (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science (New York, NY) 339(6125):1320–1323

    Article  CAS  Google Scholar 

  18. Dengler VL, Galbraith M, Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49(1):1–15

    Article  CAS  PubMed  Google Scholar 

  19. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450(7170):736–740

    Article  CAS  PubMed  Google Scholar 

  20. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA et al (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139(1):149–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    Article  CAS  PubMed  Google Scholar 

  22. Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14(5):283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu L, Chen Y, Tooze SA (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14(2):207–215

    Article  CAS  PubMed  Google Scholar 

  24. Brown RE, Hunter RL, Hwang SA (2017) Morphoproteomic-guided host-directed therapy for tuberculosis. Front Immunol 8:78

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guerrini V, Prideaux B, Blanc L, Bruiners N, Arrigucci R, Singh S et al (2018) Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog 14(8):e1007223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lachmandas E, Beigier-Bompadre M, Cheng SC, Kumar V, van Laarhoven A, Wang X et al (2016) Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol 46(11):2574–2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weichhart T, Hengstschläger M, Linke M (2015) Regulation of innate immune cell function by mTOR. Nat Rev Immunol 15(10):599–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK et al (2009) Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6(3):231–243

    Article  CAS  PubMed  Google Scholar 

  29. Juarez E, Carranza C, Sanchez G, Gonzalez M, Chavez J, Sarabia C et al (2016) Loperamide restricts intracellular growth of Mycobacterium tuberculosis in lung macrophages. Am J Respir Cell Mol Biol 55(6):837–847

    Article  CAS  PubMed  Google Scholar 

  30. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766

    Article  CAS  PubMed  Google Scholar 

  31. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M et al (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27(3):505–517

    Article  CAS  PubMed  Google Scholar 

  32. Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313(5792):1438–1441

    Article  CAS  PubMed  Google Scholar 

  33. Fabri M, Stenger S, Shin DM, Yuk JM, Liu PT, Realegeno S et al (2011) Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med 3(104):104ra2

    Article  CAS  Google Scholar 

  34. Munz C (2016) Autophagy proteins in antigen processing for presentation on MHC molecules. Immunol Rev 272(1):17–27

    Article  PubMed  CAS  Google Scholar 

  35. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhong Z, Sanchez-Lopez E, Karin M (2016) Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166(2):288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bradfute SB, Castillo EF, Arko-Mensah J, Chauhan S, Jiang S, Mandell M et al (2013) Autophagy as an immune effector against tuberculosis. Curr Opin Microbiol 16(3):355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chandra P, Ghanwat S, Matta SK, Yadav SS, Mehta M, Siddiqui Z et al (2015) Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages. Sci Rep 5:16320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kathania M, Raje CI, Raje M, Dutta RK, Majumdar S (2011) Bfl-1/A1 acts as a negative regulator of autophagy in mycobacteria infected macrophages. Int J Biochem Cell Biol 43(4):573–585

    Article  CAS  PubMed  Google Scholar 

  40. Espert L, Beaumelle B, Vergne I (2015) Autophagy in Mycobacterium tuberculosis and HIV infections. Front Cell Infect Microbiol 5:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Shui W, Petzold CJ, Redding A, Liu J, Pitcher A, Sheu L et al (2011) Organelle membrane proteomics reveals differential influence of mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation. J Proteome Res 10(1):339–348

    Article  CAS  PubMed  Google Scholar 

  42. Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M et al (2012) ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8(9):1357–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shin DM, Jeon BY, Lee HM, Jin HS, Yuk JM, Song CH et al (2010) Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog 6(12):e1001230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zullo AJ, Lee S (2012) Mycobacterial induction of autophagy varies by species and occurs independently of mammalian target of rapamycin inhibition. J Biol Chem 287(16):12668–12678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuan Y, Li P, Ye J (2012) Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3(3):173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guerrini V, Gennaro ML (2019) Foam cells: one size doesn’t fit all. Trends Immunol 40(12):1163–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi L, Eugenin EA, Subbian S (2016) Immunometabolism in tuberculosis. Front Immunol 7:150

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML (2015) Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep 5:18176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shin JH, Yang JY, Jeon BY, Yoon YJ, Cho SN, Kang YH et al (2011) (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J Proteome Res 10(5):2238–2247

    Article  CAS  PubMed  Google Scholar 

  51. Subbian S, Tsenova L, Yang G, O’Brien P, Parsons S, Peixoto B et al (2011) Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. Open Biol 1(4):110016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Subbian S, Tsenova L, Kim MJ, Wainwright HC, Visser A, Bandyopadhyay N et al (2015) Lesion-specific immune response in granulomas of patients with pulmonary tuberculosis: a pilot study. PLoS One 10(7):e0132249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O’Leary SM, O’Sullivan MP et al (2016) Cutting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J Immunol 196(6):2444–2449

    Article  CAS  PubMed  Google Scholar 

  54. Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, Cheever A et al (2010) Caspase-1 independent IL-1beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 184(7):3326–3330

    Article  CAS  PubMed  Google Scholar 

  55. Osada-Oka M, Goda N, Saiga H, Yamamoto M, Takeda K, Ozeki Y et al (2019) Metabolic adaptation to glycolysis is a basic defense mechanism of macrophages for Mycobacterium tuberculosis infection. Int Immunol 31(12):781–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Elks PM, Brizee S, van der Vaart M, Walmsley SR, van Eeden FJ, Renshaw SA et al (2013) Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathog 9(12):e1003789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Koo MS, Subbian S, Kaplan G (2012) Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages. Cell Commun Signal 10(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C et al (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12(2):223–232

    Article  CAS  PubMed  Google Scholar 

  59. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V et al (2014) mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345(6204):1250684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonça LE, Pacis A et al (2018) BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172(1-2):176–90.e19

    Article  CAS  PubMed  Google Scholar 

  61. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG et al (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352(6284):aaf1098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Netea MG, van der Meer JW (2017) Trained immunity: an ancient way of remembering. Cell Host Microbe 21(3):297–300

    Article  CAS  PubMed  Google Scholar 

  63. Arts RJW, Moorlag S, Novakovic B, Li Y, Wang SY, Oosting M et al (2018) BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23(1):89–100.e5

    Article  CAS  PubMed  Google Scholar 

  64. Kleinnijenhuis J, Quintin J, Preijers F, Benn CS, Joosten LA, Jacobs C et al (2014) Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun 6(2):152–158

    Article  CAS  PubMed  Google Scholar 

  65. Buffen K, Oosting M, Quintin J, Ng A, Kleinnijenhuis J, Kumar V et al (2014) Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog 10(10):e1004485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Netea MG, van Crevel R (2014) BCG-induced protection: effects on innate immune memory. Semin Immunol 26(6):512–517

    Article  CAS  PubMed  Google Scholar 

  67. Covián C, Fernández-Fierro A, Retamal-Díaz A, Díaz FE, Vasquez AE, Lay MK et al (2019) BCG-induced cross-protection and development of trained immunity: implication for vaccine design. Front Immunol 10:2806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S et al (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109(43):17537–17542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arts RJ, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E et al (2016) Glutaminolysis and Fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24(6):807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F et al (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345(6204):1251086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Arts RJ, Joosten LA, Netea MG (2016) Immunometabolic circuits in trained immunity. Semin Immunol 28(5):425–430

    Article  CAS  PubMed  Google Scholar 

  72. Arts RJ, Carvalho A, La Rocca C, Palma C, Rodrigues F, Silvestre R et al (2016) Immunometabolic pathways in BCG-induced trained immunity. Cell Rep 17(10):2562–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL Jr, Eissa NT (2009) Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 15(3):267–276

    Article  CAS  PubMed  Google Scholar 

  74. Agarwal S, Bell CM, Rothbart SB, Moran RG (2015) AMP-activated Protein Kinase (AMPK) control of mTORC1 is p53- and TSC2-independent in Pemetrexed-treated carcinoma cells. J Biol Chem 290(46):27473–27486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B et al (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11(5):390–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS et al (2017) Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab 25(2):463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bruiners N, Dutta NK, Guerrini V, Salamon H, Yamaguchi KD, Karakousis PC et al (2020) The anti-tubercular activity of simvastatin is mediated by cholesterol-dependent regulation of autophagy via the AMPK-mTORC1-TFEB axis. BioRxiv. https://doi.org/10.1101/2020.03.04.977579

  78. Castellano BM, Thelen AM, Moldavski O, Feltes M, van der Welle RE, Mydock-McGrane L et al (2017) Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science (New York, NY) 355(6331):1306–1311

    Article  CAS  Google Scholar 

  79. Xu J, Dang Y, Ren YR, Liu JO (2010) Cholesterol trafficking is required for mTOR activation in endothelial cells. Proc Natl Acad Sci U S A 107(10):4764–4769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dutta NK, Bruiners N, Pinn ML, Zimmerman MD, Prideaux B, Dartois V et al (2016) Statin adjunctive therapy shortens the duration of TB treatment in mice. J Antimicrob Chemother 71(6):1570–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dutta NK, Bruiners N, Zimmerman MD, Tan S, Dartois V, Gennaro ML et al (2020) Adjunctive host-directed therapy with statins improves tuberculosis-related outcomes in mice. J Infect Dis 221(7):1079–1087

    Article  CAS  PubMed  Google Scholar 

  82. Andersson AM, Andersson B, Lorell C, Raffetseder J, Larsson M, Blomgran R (2016) Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep 6:28171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shi G, Ozog S, Torbett BE, Compton AA (2018) mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3. Proc Natl Acad Sci U S A 115(43):E10069–E10e78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jeon CY, Murray MB (2008) Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med 5(7):e152

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lönnroth K et al (2011) The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med 9:81

    Article  PubMed  PubMed Central  Google Scholar 

  86. Singhal A, Jie L, Kumar P, Hong GS, Leow MK, Paleja B et al (2014) Metformin as adjunct antituberculosis therapy. Sci Transl Med 6(263):263ra159

    Article  PubMed  CAS  Google Scholar 

  87. Leow MK, Dalan R, Chee CB, Earnest A, Chew DE, Tan AW et al (2014) Latent tuberculosis in patients with diabetes mellitus: prevalence, progression and public health implications. Exp Clin Endocrinol Diab German Society of Endocrinology [and] German Diabetes Association 122(9):528–532

    Article  CAS  Google Scholar 

  88. Lee MC, Chiang CY, Lee CH, Ho CM, Chang CH, Wang JY et al (2018) Metformin use is associated with a low risk of tuberculosis among newly diagnosed diabetes mellitus patients with normal renal function: a nationwide cohort study with validated diagnostic criteria. PLoS One 13(10):e0205807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Pan SW, Yen YF, Kou YR, Chuang PH, Su VY, Feng JY et al (2018) The risk of TB in patients with type 2 diabetes initiating metformin vs sulfonylurea treatment. Chest 153(6):1347–1357

    Article  PubMed  Google Scholar 

  90. Degner NR, Wang JY, Golub JE, Karakousis PC (2018) Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. Clin Infect Dis 66(2):198–205

    Article  CAS  PubMed  Google Scholar 

  91. Ma Y, Pang Y, Shu W, Liu YH, Ge QP, Du J et al (2018) Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: experiences from 3-year follow-up. Eur J Clin Microbiol Infect Dis 37(7):1259–1263

    Article  CAS  PubMed  Google Scholar 

  92. Lee YJ, Han SK, Park JH, Lee JK, Kim DK, Chung HS et al (2018) The effect of metformin on culture conversion in tuberculosis patients with diabetes mellitus. Korean J Intern Med 33(5):933–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lachmandas E, Eckold C, Böhme J, Koeken V, Marzuki MB, Blok B et al (2019) Metformin alters human host responses to Mycobacterium tuberculosis in healthy subjects. J Infect Dis 220(1):139–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vento S, Lanzafame M (2011) Tuberculosis and cancer: a complex and dangerous liaison. Lancet Oncol 12(6):520–522

    Article  PubMed  Google Scholar 

  95. Jeon SY, Yhim HY, Lee NR, Song EK, Kwak JY, Yim CY (2017) Everolimus-induced activation of latent Mycobacterium tuberculosis infection in a patient with metastatic renal cell carcinoma. Korean J Intern Med 32(2):365–368

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Laura Gennaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruiners, N., Guerrini, V., Gennaro, M.L. (2021). The Mammalian Target of Rapamycin Complex 1 (mTORC1): An Ally of M. tuberculosis in Host Cells. In: Karakousis, P.C., Hafner, R., Gennaro, M.L. (eds) Advances in Host-Directed Therapies Against Tuberculosis . Springer, Cham. https://doi.org/10.1007/978-3-030-56905-1_3

Download citation

Publish with us

Policies and ethics