Skip to main content

High-Density Lipoproteins

  • Chapter
  • First Online:
Therapeutic Lipidology

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Low plasma levels of cholesterol carried by high-density lipoprotein (HDL) particles are firmly established as a major cardiovascular risk factor. Paradoxically, cardiovascular mortality is also elevated at extremely high levels of HDL cholesterol. Furthermore, genetic epidemiology often does not support a causal relationship between HDL cholesterol and cardiovascular risk.

HDL particles contain multiple protein and lipid components and are highly heterogeneous in their metabolism, structure and biological function. Small, dense, protein-rich HDLs display elevated anti-atherogenic activities as compared to large, light, lipid-rich particles.

HDL metabolism and function are altered in both low and extremely high HDL cholesterol (HDL-C) states. Low HDL-C levels are typically accompanied by reduced circulating levels of large HDL and deficient biological activities of small HDL particles. Reduced capacity of HDL to efflux cholesterol from lipid-loaded macrophages is associated with both the presence of cardiovascular disease and the risk of future cardiovascular events. However, therapeutic HDL-C raising, which predominantly increases levels of large HDL, have repeatedly failed to reduce cardiovascular events in patients treated with statins. Such flagrant controversy between classic epidemiology, genetic epidemiology and clinical trials needs to be urgently resolved in order to allow further development of HDL-targeting therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcheboeuf M. Recherches sur les phosphoaminolipides et les stérides du sérum et du plasma sanguins; entraînement des phospholipides, des stérols et des stérides par les diverses fractions au cours du fractionnement des protéines du sérum. Bull Soc Chim Biol. 1929;11:268–93.

    Google Scholar 

  2. Jones HB, Gofman JW, Lindgren FT, Lyon TP, Graham DM, Strisower B, et al. Lipoproteins in atherosclerosis. Am J Med. 1951;11(3):358–80.

    Article  CAS  PubMed  Google Scholar 

  3. Barr DP, Russ EM, Eder HA. Protein-lipid relationships in human plasma: II. In atherosclerosis and related conditions. Am J Med. 1951;11(4):480.

    Article  CAS  PubMed  Google Scholar 

  4. Miller GJ, Miller NE. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1975;1(7897):16–9.

    Article  CAS  PubMed  Google Scholar 

  5. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989;79(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  6. Kontush A, Chapman MJ. High-density lipoproteins: structure, metabolism, function and therapeutics. New York: Wiley; 2012. 648 p.

    Google Scholar 

  7. Wlodawer A, Segrest JP, Chung BH, Chiovetti R Jr, Weinstein JN. High-density lipoprotein recombinants: evidence for a bicycle tire micelle structure obtained by neutron scattering and electron microscopy. FEBS Lett. 1979;104(2):231–5.

    Article  CAS  PubMed  Google Scholar 

  8. Kontush A, Lindahl M, Lhomme M, Calabresi L, Chapman MJ, Davidson WS. Structure of HDL: particle subclasses and molecular components. Handb Exp Pharmacol. 2015;224:3–51.

    Article  CAS  PubMed  Google Scholar 

  9. Segrest JP, Jones MK, Klon AE, Sheldahl CJ, Hellinger M, De Loof H, et al. A detailed molecular belt model for apolipoprotein A-I in discoidal high-density lipoprotein. J Biol Chem. 1999;274(45):31755–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bhat S, Sorci-Thomas MG, Alexander ET, Samuel MP, Thomas MJ. Intermolecular contact between globular N-terminal fold and C-terminal domain of ApoA-I stabilizes its lipid-bound conformation: studies employing chemical cross-linking and mass spectrometry. J Biol Chem. 2005;280(38):33015–25.

    Article  CAS  PubMed  Google Scholar 

  11. Wu Z, Wagner MA, Zheng L, Parks JS, Shy JM 3rd, Smith JD, et al. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat Struct Mol Biol. 2007;14(9):861–8.

    Article  CAS  PubMed  Google Scholar 

  12. Silva RA, Huang R, Morris J, Fang J, Gracheva EO, Ren G, et al. Structure of apolipoprotein A-I in spherical high-density lipoproteins of different sizes. Proc Natl Acad Sci U S A. 2008;105(34):12176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu Z, Gogonea V, Lee X, May RP, Pipich V, Wagner MA, et al. The low resolution structure of ApoA1 in spherical high density lipoprotein revealed by small angle neutron scattering. J Biol Chem. 2011;286(14):12495–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang R, Silva RA, Jerome WG, Kontush A, Chapman MJ, Curtiss LK, et al. Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat Struct Mol Biol. 2011;18(4):416–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chetty PS, Nguyen D, Nickel M, Lund-Katz S, Mayne L, Englander SW, et al. Comparison of apoA-I helical structure and stability in discoidal and spherical HDL particles by HX and mass spectrometry. J Lipid Res. 2013;54(6):1589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenson RS, Brewer HB Jr, Chapman MJ, Fazio S, Hussain MM, Kontush A, et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem. 2011;57(3):392–410.

    Article  CAS  PubMed  Google Scholar 

  17. Jakubowski H. Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem. 2000;275(6):3957–62.

    Article  CAS  PubMed  Google Scholar 

  18. Qiu X, Mistry A, Ammirati MJ, Chrunyk BA, Clark RW, Cong Y, et al. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat Struct Mol Biol. 2007;14(2):106–13.

    Article  PubMed  CAS  Google Scholar 

  19. Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, et al. Shotgun proteomics implicates protease inhibition and complement activation in the anti-inflammatory properties of HDL. J Clin Invest. 2007;117(3):746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wurfel MM, Kunitake ST, Lichenstein H, Kane JP, Wright SD. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J Exp Med. 1994;180(3):1025–35.

    Article  CAS  PubMed  Google Scholar 

  21. Davidson WS, Silva RAGD, Chantepie S, Lagor WR, Chapman MJ, Kontush A. Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function. Arterioscler Thromb Vasc Biol. 2009;29(6):870–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Furtado JD, Yamamoto R, Melchior JT, Andraski AB, Gamez-Guerrero M, Mulcahy P, et al. Distinct proteomic signatures in 16 HDL (high-density lipoprotein) subspecies. Arterioscl Thromb Vasc Biol. 2018;38(12):2827–42.

    Article  CAS  PubMed  Google Scholar 

  23. Cheung MC, Vaisar T, Han X, Heinecke JW, Albers JJ. Phospholipid transfer protein in human plasma associates with proteins linked to immunity and inflammation. Biochemistry. 2010;49(34):7314–22.

    Article  CAS  PubMed  Google Scholar 

  24. Wiesner P, Leidl K, Boettcher A, Schmitz G, Liebisch G. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J Lipid Res. 2009;50(3):574–85.

    Article  CAS  PubMed  Google Scholar 

  25. Kontush A, Lhomme M, Chapman MJ. Unraveling the complexities of the HDL lipidome. J Lipid Res. 2013;54(11):2950–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Camont L, Lhomme M, Rached F, Le Goff W, Negre-Salvayre A, Salvayre R, et al. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler Thromb Vasc Biol. 2013;33(12):2715–23.

    Article  CAS  PubMed  Google Scholar 

  27. Lucke S, Levkau B. Endothelial functions of sphingosine-1-phosphate. Cell Physiol Biochem. 2010;26(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  28. Krishnan S, Huang J, Lee H, Guerrero A, Berglund L, Anuurad E, et al. Combined high-density lipoprotein proteomic and glycomic profiles in patients at risk for coronary artery disease. J Proteome Res. 2015;14(12):5109–18.

    Article  CAS  PubMed  Google Scholar 

  29. Sukhorukov V, Gudelj I, Pucic-Bakovic M, Zakiev E, Orekhov A, Kontush A, et al. Glycosylation of human plasma lipoproteins reveals a high level of diversity, which directly impacts their functional properties. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(5):643–53.

    Article  CAS  PubMed  Google Scholar 

  30. Krishnan S, Shimoda M, Sacchi R, Kailemia MJ, Luxardi G, Kaysen GA, et al. HDL glycoprotein composition and site-specific glycosylation differentiates between clinical groups and affects IL-6 secretion in lipopolysaccharide-stimulated monocytes. Sci Rep. 2017;7:43728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Majek P, Pecankova K, Maly M, Oravec M, Riedel T, Dyr JE. N-glycosylation of apolipoprotein A1 in cardiovascular diseases. Transl Res. 2015;165(2):360–2.

    Article  CAS  PubMed  Google Scholar 

  32. Bisgaier CL, Glickman RM. Intestinal synthesis, secretion, and transport of lipoproteins. Annu Rev Physiol. 1983;45:625–36.

    Article  CAS  PubMed  Google Scholar 

  33. Phillips MC. Is ABCA1 a lipid transfer protein? J Lipid Res. 2018;59(5):749–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mendivil CO, Furtado J, Morton AM, Wang L, Sacks FM. Novel pathways of apolipoprotein A-I metabolism in high-density lipoprotein of different sizes in humans. Arterioscler Thromb Vasc Biol. 2016;36(1):156–65.

    Article  CAS  PubMed  Google Scholar 

  35. Field FJ, Mathur SN. Intestinal lipoprotein synthesis and secretion. Prog Lipid Res. 1995;34(2):185–98.

    Article  CAS  PubMed  Google Scholar 

  36. Nikkila EA, Taskinen MR, Sane T. Plasma high-density lipoprotein concentration and subfraction distribution in relation to triglyceride metabolism. Am Heart J. 1987;113(2 Pt 2):543–8.

    Article  CAS  PubMed  Google Scholar 

  37. Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010;30(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  38. Hoekstra M. SR-BI as target in atherosclerosis and cardiovascular disease - a comprehensive appraisal of the cellular functions of SR-BI in physiology and disease. Atherosclerosis. 2017;258:153–61.

    Article  CAS  PubMed  Google Scholar 

  39. Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96(12):1221–32.

    Article  CAS  PubMed  Google Scholar 

  40. Hatters DM, Peters-Libeu CA, Weisgraber KH. Apolipoprotein E structure: insights into function. Trends Biochem Sci. 2006;31(8):445–54.

    Article  CAS  PubMed  Google Scholar 

  41. Dikkers A, Tietge UJ. Biliary cholesterol secretion: more than a simple ABC. World J Gastroenterol. 2010;16(47):5936–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mineo C, Shaul PW. Role of high-density lipoprotein and scavenger receptor B type I in the promotion of endothelial repair. Trends Cardiovasc Med. 2007;17(5):156–61.

    Article  CAS  PubMed  Google Scholar 

  44. Nofer JR, Brodde MF, Kehrel BE. High-density lipoproteins, platelets and the pathogenesis of atherosclerosis. Clin Exp Pharmacol Physiol. 2010;37(7):726–35.

    Article  CAS  PubMed  Google Scholar 

  45. Brunham LR, Kruit JK, Pape TD, Timmins JM, Reuwer AQ, Vasanji Z, et al. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med. 2007;13(3):340–7.

    Article  CAS  PubMed  Google Scholar 

  46. Esteve E, Ricart W, Fernandez-Real JM. Dyslipidemia and inflammation: an evolutionary conserved mechanism. Clin Nutr. 2005;24(1):16–31.

    Article  CAS  PubMed  Google Scholar 

  47. Kontush A. HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res. 2014;103(3):341–9.

    Article  CAS  PubMed  Google Scholar 

  48. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977;62(5):707–14.

    Article  CAS  PubMed  Google Scholar 

  49. Assmann G, Schulte H, von Eckardstein A, Huang Y. High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis. 1996;124 Suppl:S11–20.

    Article  CAS  PubMed  Google Scholar 

  50. Ko DT, Alter DA, Guo H, Koh M, Lau G, Austin PC, et al. High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: the CANHEART study. J Am Coll Cardiol. 2016;68(19):2073–83.

    Article  CAS  PubMed  Google Scholar 

  51. Madsen CM, Varbo A, Nordestgaard BG. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur Heart J. 2017;38(32):2478–86.

    Article  CAS  PubMed  Google Scholar 

  52. Bowe B, Xie Y, Xian H, Balasubramanian S, Zayed MA, Al-Aly Z. High density lipoprotein cholesterol and the risk of all-cause mortality among US veterans. Clin J Am Soc Nephrol. 2016;11(10):1784–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384(9943):626–35.

    Article  CAS  PubMed  Google Scholar 

  55. Movva R, Rader DJ. Laboratory assessment of HDL heterogeneity and function. Clin Chem. 2008;54(5):788–800.

    Article  CAS  PubMed  Google Scholar 

  56. Jensen MK, Aroner SA, Mukamal KJ, Furtado JD, Post WS, Tsai MY, et al. High-density lipoprotein subspecies defined by presence of apolipoprotein C-III and incident coronary heart disease in four cohorts. Circulation. 2018;137(13):1364–73.

    Article  CAS  PubMed  Google Scholar 

  57. von Eckardstein A. Differential diagnosis of familial high-density lipoprotein deficiency syndromes. Atherosclerosis. 2006;186(2):231–9.

    Article  CAS  Google Scholar 

  58. Chiesa G, Sirtori CR. Apolipoprotein A-I Milano: current perspectives. Curr Opin Lipidol. 2003;14(2):159–63.

    Article  CAS  PubMed  Google Scholar 

  59. Oram JF, Vaughan AM. ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ Res. 2006;99(10):1031–43.

    Article  CAS  PubMed  Google Scholar 

  60. Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L. Role of LCAT in atherosclerosis. J Atheroscler Thromb. 2016;23(2):119–27.

    Article  CAS  PubMed  Google Scholar 

  61. Oldoni F, Baldassarre D, Castelnuovo S, Ossoli A, Amato M, van Capelleveen J, et al. Complete and partial lecithin:cholesterol acyltransferase deficiency is differentially associated with atherosclerosis. Circulation. 2018;138(10):1000–7.

    Article  CAS  PubMed  Google Scholar 

  62. Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res. 2010;51(8):2032–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lamarche B, Rashid S, Lewis GF. HDL metabolism in hypertriglyceridemic states: an overview. Clin Chim Acta. 1999;286(1–2):145–61.

    Article  CAS  PubMed  Google Scholar 

  64. Thompson JF, Wood LS, Pickering EH, DeChairo B, Hyde CL. High-density genotyping and functional SNP localization in the CETP gene. J Lipid Res. 2007;48(2):434–43.

    Article  CAS  PubMed  Google Scholar 

  65. Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004;45(7):1169–96.

    Article  CAS  PubMed  Google Scholar 

  66. Thompson A, Di Angelantonio E, Sarwar N, Erqou S, Saleheen D, Dullaart RP, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299(23):2777–88.

    Article  CAS  PubMed  Google Scholar 

  67. Zanoni P, Khetarpal SA, Larach DR, Rader DJ. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science. 2016;351:1166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Helgadottir A, Sulem P, Thorgeirsson G, Gretarsdottir S, Thorleifssoni G, Jensson BO, et al. Rare SCARB1 mutations associate with high-density lipoprotein cholesterol but not with coronary artery disease. Eur Heart J. 2018;39(23):2172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. TG and HDL Working Group of the Exome Sequencing Project NH, Lung, and Blood Institute, Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31.

    Google Scholar 

  70. Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371(1):32–41.

    Article  PubMed  CAS  Google Scholar 

  71. Singaraja RR, Sivapalaratnam S, Hovingh K, Dubé M-P, Castro-Perez J, Collins HL, et al. The impact of partial and complete loss-of-function mutations in endothelial lipase on high-density lipoprotein levels and functionality in humans. Circ Cardiovasc Genet. 2013;6:54–62.

    Article  CAS  PubMed  Google Scholar 

  72. Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010;21:312–8.

    Article  CAS  PubMed  Google Scholar 

  73. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gordon SM, Chung JH, Playford MP, Dey AK, Sviridov D, Seifuddin F, et al. High density lipoprotein proteome is associated with cardiovascular risk factors and atherosclerosis burden as evaluated by coronary CT angiography. Atherosclerosis. 2018;278:278–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Van Lenten BJ, Hama SY, de Beer FC, Stafforini DM, McIntyre TM, Prescott SM, et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest. 1995;96(6):2758–67.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    Article  CAS  PubMed  Google Scholar 

  78. Connelly MA, Parry TJ, Giardino EC, Huang Z, Cheung WM, Chen C, et al. Torcetrapib produces endothelial dysfunction independent of cholesteryl ester transfer protein inhibition. J Cardiovasc Pharmacol. 2010;55(5):459–68.

    Article  CAS  PubMed  Google Scholar 

  79. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    Article  CAS  PubMed  Google Scholar 

  80. Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376(20):1933–42.

    Article  PubMed  Google Scholar 

  81. Group HTRC, Bowman L, Hopewell JC, Chen F, Wallendszus K, Stevens W, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017;377(13):1217–27.

    Article  Google Scholar 

  82. Armitage J, Holmes MV, Preiss D. Cholesteryl Ester transfer protein inhibition for preventing cardiovascular events JACC review topic of the week. J Am Coll Cardiol. 2019;73(4):477–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nissen SE, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290(17):2292–300.

    Article  CAS  PubMed  Google Scholar 

  84. Reijers JAA, Kallend DG, Malone KE, Jukema JW, Wijngaard PLJ, Burggraaf J, et al. MDCO-216 does not induce adverse immunostimulation, in contrast to its predecessor ETC-216. Cardiovasc Drugs Ther. 2017;31(4):381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kempen HJ, Schranz DB, Asztalos BF, Otvos J, Jeyarajah E, Drazul-Schrader D, et al. Incubation of MDCO-216 (ApoA-IMilano/POPC) with human serum potentiates ABCA1-mediated cholesterol efflux capacity, generates new prebeta-1 HDL, and causes an increase in HDL size. J Lipids. 2014;2014:923903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial a randomized clinical trial. JAMA Cardiol. 2018;3(9):806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tardif JC, Gregoire J, L'Allier PL, Ibrahim R, Lesperance J, Heinonen TM, et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA. 2007;297(15):1675–82.

    Article  PubMed  Google Scholar 

  88. Michael Gibson C, Korjian S, Tricoci P, Daaboul Y, Yee M, Jain P, et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I trial (ApoA-I event reducing in ischemic syndromes I). Circulation. 2016;134(24):1918–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Didichenko SA, Navdaev A, Cukier AM, Gille A, Schuetz P, Spycher MO, et al. Enhanced HDL functionality in small HDL species produced upon remodeling of HDL by reconstituted HDL, CSL112: effects on cholesterol efflux, anti-inflammatory and antioxidative activity. Circ Res. 2016;119(6):751–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kootte RS, Smits LP, van der Valk FM, Dasseux JL, Keyserling CH, Barbaras R, et al. Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA. J Lipid Res. 2015;56(3):703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kataoka Y, Andrews J, Duong M, Nguyen T, Schwarz N, Fendler J, et al. Regression of coronary atherosclerosis with infusions of the high-density lipoprotein mimetic CER-001 in patients with more extensive plaque burden. Cardiovasc Diagn Ther. 2017;7(3):252–63.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tardif JC, Ballantyne CM, Barter P, Dasseux JL, Fayad ZA, Guertin MC, et al. Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J. 2014;35(46):3277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nicholls SJ, Andrews J, Kastelein JJP, Merkely B, Nissen SE, Ray KK, et al. Effect of serial infusions of CER-001, a pre-beta high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial a randomized clinical trial. JAMA Cardiol. 2018;3(9):815–22.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Waksman R, Torguson R, Kent KM, Pichard AD, Suddath WO, Satler LF, et al. A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high-density lipoprotein plasma infusions in patients with acute coronary syndrome. J Am Coll Cardiol. 2010;55(24):2727–35.

    Article  PubMed  Google Scholar 

  95. Navab M, Shechter I, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Fogelman AM. Structure and function of HDL mimetics. Arterioscler Thromb Vasc Biol. 2010;30(2):164–8.

    Article  CAS  PubMed  Google Scholar 

  96. Bloedon LT, Dunbar R, Duffy D, Pinell-Salles P, Norris R, DeGroot BJ, et al. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J Lipid Res. 2008;49(6):1344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ditiatkovski M, Palsson J, Chin-Dusting J, Remaley AT, Sviridov D. Apolipoprotein A-I mimetic peptides: discordance between in vitro and in vivo properties-brief report. Arterioscler Thromb Vasc Biol. 2017;37(7):1301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shamburek RD, Bakker-Arkema R, Shamburek AM, Freeman LA, Amar MJ, Auerbach B, et al. Safety and tolerability of ACP-501, a recombinant human lecithin:cholesterol acyltransferase, in a phase 1 single-dose escalation study. Circ Res. 2016;118(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  99. Graham MJ, Lee RG, Bell TA 3rd, Fu W, Mullick AE, Alexander VJ, et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112(11):1479–90.

    Article  CAS  PubMed  Google Scholar 

  100. Yang XH, Lee SR, Choi YS, Alexander VJ, Digenio A, Yang QQ, et al. Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results. J Lipid Res. 2016;57(4):706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chapman MJ, Redfern JS, McGovern ME, Giral P. Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol Ther. 2010;126(3):314–45.

    Article  CAS  PubMed  Google Scholar 

  102. Millan J, Pinto X, Brea A, Blasco M, Hernandez-Mijares A, Ascaso J, et al. Fibrates in the secondary prevention of cardiovascular disease (infarction and stroke). Results of a systematic review and meta-analysis of the Cochrane collaboration. Clin Investig Arterioscler. 2018;30(1):30–5.

    PubMed  Google Scholar 

  103. Araki E, Yamashita S, Arai H, Yokote K, Satoh J, Inoguchi T, et al. Effects of pemafibrate, a novel selective PPAR alpha modulator, on lipid and glucose metabolism in patients with type 2 diabetes and hypertriglyceridemia: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2018;41(3):538–46.

    Article  CAS  PubMed  Google Scholar 

  104. Scott LJ. Alipogene tiparvovec: a review of its use in adults with familial lipoprotein lipase deficiency. Drugs. 2015;75(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  105. Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.

    Article  PubMed  CAS  Google Scholar 

  106. Group HTC, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12.

    Article  CAS  Google Scholar 

  107. Schandelmaier S, Briel M, Saccilotto R, Olu KK, Arpagaus A, Hemkens LG, et al. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev. 2017;6(6):CD009744.

    PubMed  Google Scholar 

  108. Keene D, Price C, Shun-Shin MJ, Francis DP. Effect on cardiovascular risk of high-density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ. 2014;349:g4379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Nicholls SJ, Gordon A, Johansson J, Wolski K, Ballantyne CM, Kastelein JJ, et al. Efficacy and safety of a novel oral inducer of apolipoprotein A-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial. J Am Coll Cardiol. 2011;57(9):1111–9.

    Article  CAS  PubMed  Google Scholar 

  110. Nicholls SJ, Puri R, Wolski K, Ballantyne CM, Barter PJ, Brewer HB, et al. Effect of the BET protein inhibitor, RVX-208, on progression of coronary atherosclerosis: results of the phase 2b, randomized, double-blind, multicenter, ASSURE trial. Am J Cardiovasc Drugs. 2016;16(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  111. Shishikura D, Kataoka Y, Honda S, Takata K, Kim SW, Andrews J, et al. The effect of Bromodomain and extra-terminal inhibitor Apabetalone on attenuated coronary atherosclerotic plaque: insights from the ASSURE trial. Am J Cardiovasc Drugs. 2019;19(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  112. Nicholls SJ, Ray KK, Johansson JO, Gordon A, Sweeney M, Halliday C, et al. Selective BET protein inhibition with Apabetalone and cardiovascular events: a pooled analysis of trials in patients with coronary artery disease. Am J Cardiovasc Drugs. 2018;18(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  113. Nomiyama T, Bruemmer D. Liver X receptors as therapeutic targets in metabolism and atherosclerosis. Curr Atheroscler Rep. 2008;10(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  114. Katz A, Udata C, Ott E, Hickey L, Burczynski ME, Burghart P, et al. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J Clin Pharmacol. 2009;49(6):643–9.

    Article  CAS  PubMed  Google Scholar 

  115. Yonezawa S, Abe M, Kawasaki Y, Natori Y, Sugiyama A. Each liver X receptor (LXR) type has a different purpose in different situations. Biochem Biophys Res Commun. 2019;508(1):92–6.

    Article  CAS  PubMed  Google Scholar 

  116. Fiorucci S, Cipriani S, Baldelli F, Mencarelli A. Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Prog Lipid Res. 2010;49(2):171–85.

    Article  CAS  PubMed  Google Scholar 

  117. Mencarelli A, Renga B, Distrutti E, Fiorucci S. Antiatherosclerotic effect of farnesoid X receptor. Am J Physiol Heart Circ Physiol. 2009;296(2):H272–81.

    Article  CAS  PubMed  Google Scholar 

  118. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9.

    Article  CAS  PubMed  Google Scholar 

  119. Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen WM, Sheu WH, Tseng PC, Lee TS, Lee WJ, Chang PJ, et al. Modulation of microRNA expression in subjects with metabolic syndrome and decrease of cholesterol efflux from macrophages via microRNA-33-mediated attenuation of ATP-binding cassette transporter A1 expression by statins. PLoS One. 2016;11(5):e0154672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Ference BA, Kastelein JJP, Ginsberg HN, Chapman J, Nicholls SJ, Ray KK, et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk. JAMA. 2017;318(10):947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tardif JC, Rheaume E, Lemieux Perreault LP, Gregoire JC, Feroz Zada Y, Asselin G, et al. Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib. Circ Cardiovasc Genet. 2015;8(2):372–82.

    Article  CAS  PubMed  Google Scholar 

  123. Nicholls SJ, Tuzcu EM, Brennan DM, Tardif JC, Nissen SE. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation. 2008;118(24):2506–14.

    Article  CAS  PubMed  Google Scholar 

  124. Yvan-Charvet L, Kling J, Pagler T, Li H, Hubbard B, Fisher T, et al. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler Thromb Vasc Biol. 2010;30(7):1430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatol Kontush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Darabi, M., Zakiev, E., Kontush, A. (2021). High-Density Lipoproteins. In: Davidson, M.H., Toth, P.P., Maki, K.C. (eds) Therapeutic Lipidology. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-56514-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56514-5_18

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56513-8

  • Online ISBN: 978-3-030-56514-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics