Skip to main content

Blood Components

  • Chapter
  • First Online:
Management of Bleeding Patients
  • 1013 Accesses

Abstract

Blood component therapy has been the mainstay of transfusion medicine for many years. Components are obtained by collection of whole blood or by apheresis of a specific component from screened, volunteer donors. All units are screened for hepatitis B, hepatitis C, human immunodeficiency virus, human T-cell lymphotropic virus, and syphilis. Whole blood can be processed into four basic components in the United States: red blood cells, platelets, plasma, and cryoprecipitate. Each of these components has an important role to play in hemostasis. While advancements in collection techniques and our enhanced ability to detect infections have improved the quality and safety of our blood supply, it is important to remember that transfusion is not without risk. It is therefore paramount that we do our best to ensure that each patient receive the correct product and dose when transfusion is necessary. This chapter highlights the blood components that are used to maintain hemostasis, including indications for use, modifications, and adverse reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guillaud C, Loustau V, Michel M. Hemolytic anemia in adults: main causes and diagnostic procedures. Expert Rev Hematol. 2012;5(2):229–41.

    Article  CAS  PubMed  Google Scholar 

  2. Liesveld JL, Rowe JM, Lichtman MA. Variability of the erythropoietic response in autoimmune hemolytic anemia: analysis of 109 cases. Blood. 1987;69(3):820–6.

    Article  CAS  PubMed  Google Scholar 

  3. Conley CL, Lippman SM, Ness PM, Petz LD, Branch DR, Gallagher MT. Autoimmune hemolytic anemia with reticulocytopenia and erythroid marrow. N Engl J Med. 1982;306(5):281–6.

    Article  CAS  PubMed  Google Scholar 

  4. Nester T, Jain S, Poisson J. Hemotherapy decisions and their outcomes. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 499–543.

    Google Scholar 

  5. Carson JL, Grossman BJ, Kleinman S, Tinmouth AT, Marques MB, Fung MK, et al. Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann Intern Med. 2012;157(1):49–58.

    Article  PubMed  Google Scholar 

  6. AABB, ARC, ABC, ASBP. Circular of information for the use of human blood and blood components. Bethesda: AABB; 2017.

    Google Scholar 

  7. Dumont L, Papari M, Aronson C, Dumont D. Whole-blood collection and component processing. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 135–65.

    Google Scholar 

  8. Levitt JE. Standards for blood banks and transfusion services. 29th ed. Bethesda: AABB; 2014.

    Google Scholar 

  9. Dunbar N. Storage, monitoring, pretransfusion processing and distribution of blood components. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 213–29.

    Google Scholar 

  10. Hess JR. Red cell changes during storage. Transfus Apher Sci. 2010;43(1):51–9.

    Article  PubMed  Google Scholar 

  11. Beutler E, Meul A, Wood LA. Depletion and regeneration of 2,3-diphosphoglyceric acid in stored red blood cells. Transfusion. 1969;9(3):109–15.

    Article  CAS  PubMed  Google Scholar 

  12. Valeri CR, Collins FB. The physiologic effect of transfusing preserved red cells with low 2,3-diphosphoglycerate and high affinity for oxygen. Vox Sang. 1971;20(5):397–403.

    Article  CAS  PubMed  Google Scholar 

  13. Nogueira D, Rocha S, Abreu E, Costa E, Santos-Silva A. Biochemical and cellular changes in leukocyte-depleted red blood cells stored for transfusion. Transfus Med Hemother. 2015;42(1):46–51.

    Article  PubMed  Google Scholar 

  14. Kaufman RM, Dinh A, Cohn CS, Fung MK, Gorlin J, Melanson S, et al. Electronic patient identification for sample labeling reduces wrong blood in tube errors. Transfusion. 2019;59(3):972–80.

    PubMed  Google Scholar 

  15. Dutton RP, Shih D, Edelman BB, Hess J, Scalea TM. Safety of uncrossmatched type-O red cells for resuscitation from hemorrhagic shock. J Trauma. 2005;59(6):1445–9.

    Article  PubMed  Google Scholar 

  16. Josephson C, Meyer E. Neonatal and pediatric transfusion practice. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 571–97.

    Google Scholar 

  17. Maynard K. Administration of blood components. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 545–59.

    Google Scholar 

  18. Ryden SE, Oberman HA. Compatibility of common intravenous solutions with CPD blood. Transfusion. 1975;15(3):250–5.

    Article  CAS  PubMed  Google Scholar 

  19. Albert K, van Vlymen J, James P, Parlow J. Ringer’s lactate is compatible with the rapid infusion of AS-3 preserved packed red blood cells. Can J Anaesth. 2009;56(5):352–6.

    Article  PubMed  Google Scholar 

  20. Lorenzo M, Davis JW, Negin S, Kaups K, Parks S, Brubaker D, et al. Can Ringer’s lactate be used safely with blood transfusions? Am J Surg. 1998;175(4):308–10.

    Article  CAS  PubMed  Google Scholar 

  21. Beckett A, Callum J, da Luz LT, Schmid J, Funk C, Glassberg E, et al. Fresh whole blood transfusion capability for special operations forces. Can J Surg. 2015;58(3 Suppl 3):S153–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nessen SC, Eastridge BJ, Cronk D, Craig RM, Berséus O, Ellison R, et al. Fresh whole blood use by forward surgical teams in Afghanistan is associated with improved survival compared to component therapy without platelets. Transfusion. 2013;53(Suppl 1):107S–13S.

    Article  PubMed  Google Scholar 

  23. Cap AP, Pidcoke HF, Spinella P, Strandenes G, Borgman MA, Schreiber M, et al. Damage control resuscitation. Mil Med. 2018;183(suppl_2):36–43.

    Article  PubMed  Google Scholar 

  24. Yazer MH, Jackson B, Sperry JL, Alarcon L, Triulzi DJ, Murdock A. Initial safety and feasibility of cold stored uncrossmatched whole blood transfusion in civilian trauma patients. J Trauma Acute Care Surg. 2016;81:21–6.

    Article  PubMed  Google Scholar 

  25. Seheult JN, Bahr M, Anto V, Alarcon LH, Corcos A, Sperry JL, et al. Safety profile of uncrossmatched, cold-stored, low-titer, group O+ whole blood in civilian trauma patients. Transfusion. 2018;58(10):2280–8.

    Article  CAS  PubMed  Google Scholar 

  26. Seheult JN, Anto V, Alarcon LH, Sperry JL, Triulzi DJ, Yazer MH. Clinical outcomes among low-titer group O whole blood recipients compared to recipients of conventional components in civilian trauma resuscitation. Transfusion. 2018;58(8):1838–45.

    Article  PubMed  Google Scholar 

  27. Leeper CM, Yazer MH, Cladis FP, Saladino R, Triulzi DJ, Gaines BA. Use of uncrossmatched cold-stored whole blood in injured children with hemorrhagic shock. JAMA Pediatr. 2018;172(5):491–2.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thottathil P, Sesok-Pizzini D, Taylor JA, Fiadjoe JE, Vincent A, Stricker PA. Whole blood in pediatric craniofacial reconstruction surgery. J Craniofac Surg. 2017;28(5):1175–8.

    Article  PubMed  Google Scholar 

  29. Jobes DR, Sesok-Pizzini D, Friedman D. Reduced transfusion requirement with use of fresh whole blood in pediatric cardiac surgical procedures. Ann Thorac Surg. 2015;99(5):1706–11.

    Article  PubMed  Google Scholar 

  30. Sesok-Pizzini D, Friedman D, Cianfrani L, Jobes D. How do I support a pediatric cardiac surgery program utilizing fresh whole blood? Transfusion. 2019;59(4):1180–2.

    PubMed  Google Scholar 

  31. Eder A, Muniz M. Allogeneic and autologous blood donor selection. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 117–34.

    Google Scholar 

  32. Ghiglione M, Puca K. Patient blood management. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical manual. 18th ed. Bethesda: AABB; 2014. p. 599–629.

    Google Scholar 

  33. Goldberg J, Paugh TA, Dickinson TA, Fuller J, Paone G, Theurer PF, et al. Greater volume of acute normovolemic hemodilution may aid in reducing blood transfusions after cardiac surgery. Ann Thorac Surg. 2015;100:1581–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ashworth A, Klein AA. Cell salvage as part of a blood conservation strategy in anaesthesia. Br J Anaesth. 2010;105(4):401–16.

    Article  CAS  PubMed  Google Scholar 

  35. Lasalle-Williams M, Nuss R, Le T, Cole L, Hassell K, Murphy JR, et al. Extended red blood cell antigen matching for transfusions in sickle cell disease: a review of a 14-year experience from a single center (CME). Transfusion. 2011;51(8):1732–9.

    Article  PubMed  Google Scholar 

  36. Miller ST, Kim HY, Weiner DL, Wager CG, Gallagher D, Styles LA, et al. Red blood cell alloimmunization in sickle cell disease: prevalence in 2010. Transfusion. 2013;53(4):704–9.

    Article  PubMed  Google Scholar 

  37. Yawn BP, Buchanan GR, Afenyi-Annan AN, Ballas SK, Hassell KL, James AH, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312(10):1033–48.

    Article  PubMed  CAS  Google Scholar 

  38. Goel R, Ness PM, Takemoto CM, Krishnamurti L, King KE, Tobian AA. Platelet transfusions in platelet consumptive disorders are associated with arterial thrombosis and in-hospital mortality. Blood. 2015;125(9):1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wagner SJ, Vassallo R, Skripchenko A, Einarson M, Seetharaman S, Moroff G. The influence of simulated shipping conditions (24- or 30-hr interruption of agitation) on the in vitro properties of apheresis platelets during 7-day storage. Transfusion. 2008;48(6):1072–80.

    Article  CAS  PubMed  Google Scholar 

  40. Vassallo RR, Wagner SJ, Einarson M, Nixon J, Ziegler D, Moroff G. Maintenance of in vitro properties of leukoreduced whole blood-derived pooled platelets after a 24-hour interruption of agitation. Transfusion. 2009;49(10):2131–5.

    Article  CAS  PubMed  Google Scholar 

  41. Levy JH, Neal MD, Herman JH. Bacterial contamination of platelets for transfusion: strategies for prevention. Crit Care. 2018;22(1):271.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lin L, Cook DN, Wiesehahn GP, Alfonso R, Behrman B, Cimino GD, et al. Photochemical inactivation of viruses and bacteria in platelet concentrates by use of a novel psoralen and long-wavelength ultraviolet light. Transfusion. 1997;37(4):423–35.

    Article  CAS  PubMed  Google Scholar 

  43. Irsch J, Lin L. Pathogen inactivation of platelet and plasma blood components for transfusion using the INTERCEPT Blood System™. Transfus Med Hemother. 2011;38(1):19–31.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Estcourt LJ, Malouf R, Hopewell S, Trivella M, Doree C, Stanworth SJ, et al. Pathogen-reduced platelets for the prevention of bleeding. Cochrane Database Syst Rev. 2017;7:CD009072.

    PubMed  Google Scholar 

  45. Cid J, Escolar G, Lozano M. Therapeutic efficacy of platelet components treated with amotosalen and ultraviolet A pathogen inactivation method: results of a meta-analysis of randomized controlled trials. Vox Sang. 2012;103(4):322–30.

    Article  CAS  PubMed  Google Scholar 

  46. Murphy S, Gardner FH. Effect of storage temperature on maintenance of platelet viability--deleterious effect of refrigerated storage. N Engl J Med. 1969;280(20):1094–8.

    Article  CAS  PubMed  Google Scholar 

  47. Reddoch-Cardenas KM, Bynum JA, Meledeo MA, Nair PM, Wu X, Darlington DN, et al. Cold-stored platelets: a product with function optimized for hemorrhage control. Transfus Apher Sci. 2019;58(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  48. Reddoch KM, Pidcoke HF, Montgomery RK, Fedyk CG, Aden JK, Ramasubramanian AK, et al. Hemostatic function of apheresis platelets stored at 4 °C and 22 °C. Shock. 2014;41(Suppl 1):54–61.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nair PM, Pandya SG, Dallo SF, Reddoch KM, Montgomery RK, Pidcoke HF, et al. Platelets stored at 4°C contribute to superior clot properties compared to current standard-of-care through fibrin-crosslinking. Br J Haematol. 2017;178(1):119–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. The Trial to Reduce Alloimmunization to Platelets Study Group. Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. N Engl J Med. 1997;337(26):1861–9.

    Article  Google Scholar 

  51. Rebulla P. Formulae for the definition of refractoriness to platelet transfusion. Transfus Med. 1993;3(1):91–3.

    Article  CAS  PubMed  Google Scholar 

  52. Rebulla P. A mini-review on platelet refractoriness. Haematologica. 2005;90(2):247–53.

    PubMed  Google Scholar 

  53. Hod E, Schwartz J. Platelet transfusion refractoriness. Br J Haematol. 2008;142(3):348–60.

    Article  PubMed  Google Scholar 

  54. Kekomäki S, Volin L, Koistinen P, Koivunen E, Koskimies S, Ruutu T, et al. Successful treatment of platelet transfusion refractoriness: the use of platelet transfusions matched for both human leucocyte antigens (HLA) and human platelet alloantigens (HPA) in alloimmunized patients with leukaemia. Eur J Haematol. 1998;60(2):112–8.

    Article  PubMed  Google Scholar 

  55. Jia Y, Li W, Liu N, Zhang K, Gong Z, Li D, et al. Prevalence of platelet-specific antibodies and efficacy of crossmatch-compatible platelet transfusions in refractory patients. Transfus Med. 2014;24(6):406–10.

    Article  CAS  PubMed  Google Scholar 

  56. Kekomäki R, Elfenbein G, Gardner R, Graham-Pole J, Mehta P, Gross S. Improved response of patients refractory to random-donor platelet transfusions by intravenous gamma globulin. Am J Med. 1984;76(3A):199–203.

    Article  PubMed  Google Scholar 

  57. Slichter SJ, Christoffel T, Corson J, Jones MK, Pellham E, Bolgiano D. Effects of pretransfusion warming of platelets to 35 degrees C on posttransfusion platelet viability. Transfusion. 2009;49(11):2319–25.

    Article  PubMed  Google Scholar 

  58. Northup PG, Caldwell SH. Coagulation in liver disease: a guide for the clinician. Clin Gastroenterol Hepatol. 2013;11(9):1064–74.

    Article  PubMed  Google Scholar 

  59. De Caterina M, Tarantino G, Farina C, Arena A, di Maro G, Esposito P, et al. Haemostasis unbalance in Pugh-scored liver cirrhosis: characteristic changes of plasma levels of protein C versus protein S. Haemostasis. 1993;23(4):229–35.

    PubMed  Google Scholar 

  60. Abdel-Wahab OI, Healy B, Dzik WH. Effect of fresh-frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities. Transfusion. 2006;46(8):1279–85.

    Article  PubMed  Google Scholar 

  61. Soundar EP, Besandre R, Hartman SK, Teruya J, Hui SK. Plasma is ineffective in correcting mildly elevated PT-INR in critically ill children: a retrospective observational study. J Intensive Care. 2014;2(1):64.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wada H, Thachil J, Di Nisio M, Mathew P, Kurosawa S, Gando S, et al. Guidance for diagnosis and treatment of DIC from harmonization of the recommendations from three guidelines. J Thromb Haemost. 2013;11(4):761–7.

    Google Scholar 

  63. Chowdary P, Chowdhury P, Saayman AG, Paulus U, Findlay GP, Collins PW. Efficacy of standard dose and 30 ml/kg fresh frozen plasma in correcting laboratory parameters of haemostasis in critically ill patients. Br J Haematol. 2004;125(1):69–73.

    Article  PubMed  Google Scholar 

  64. Ansell J, Hirsh J, Poller L, Bussey H, Jacobson A, Hylek E. The pharmacology and management of the vitamin K antagonists: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126(3 Suppl):204S–33S.

    Article  CAS  PubMed  Google Scholar 

  65. Schwartz J, Padmanabhan A, Aqui N, Balogun RA, Connelly-Smith L, Delaney M, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the seventh special issue. J Clin Apher. 2016;31(3):149–62.

    PubMed  Google Scholar 

  66. Tholpady A, Monson J, Radovancevic R, Klein K, Bracey A. Analysis of prolonged storage on coagulation Factor (F)V, FVII, and FVIII in thawed plasma: is it time to extend the expiration date beyond 5 days? Transfusion. 2013;53(3):645–50.

    Article  CAS  PubMed  Google Scholar 

  67. Gosselin RC, Marshall C, Dwyre DM, Gresens C, Davis D, Scherer L, et al. Coagulation profile of liquid-state plasma. Transfusion. 2013;53(3):579–90.

    Article  CAS  PubMed  Google Scholar 

  68. Matijevic N, Wang YW, Cotton BA, Hartwell E, Barbeau JM, Wade CE, et al. Better hemostatic profiles of never-frozen liquid plasma compared with thawed fresh frozen plasma. J Trauma Acute Care Surg. 2013;74(1):84–90; discussion -1.

    Article  PubMed  Google Scholar 

  69. Bolliger D, Görlinger K, Tanaka KA. Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution. Anesthesiology. 2010;113(5):1205–19.

    Article  PubMed  Google Scholar 

  70. Ness PM, Perkins HA. Fibrinogen in cryoprecipitate and its relationship to factor VIII (AHF) levels. Transfusion. 1980;20(1):93–6.

    Article  CAS  PubMed  Google Scholar 

  71. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cortet M, Deneux-Tharaux C, Dupont C, Colin C, Rudigoz RC, Bouvier-Colle MH, et al. Association between fibrinogen level and severity of postpartum haemorrhage: secondary analysis of a prospective trial. Br J Anaesth. 2012;108(6):984–9.

    Article  CAS  PubMed  Google Scholar 

  73. Tahlan A, Ahluwalia J. Factor XIII: congenital deficiency factor XIII, acquired deficiency, factor XIII A-subunit, and factor XIII B-subunit. Arch Pathol Lab Med. 2014;138(2):278–81.

    Article  PubMed  Google Scholar 

  74. Fadoo Z, Merchant Q, Rehman KA. New developments in the management of congenital Factor XIII deficiency. J Blood Med. 2013;4:65–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Janson PA, Jubelirer SJ, Weinstein MJ, Deykin D. Treatment of the bleeding tendency in uremia with cryoprecipitate. N Engl J Med. 1980;303(23):1318–22.

    Article  CAS  PubMed  Google Scholar 

  76. Triulzi DJ, Blumberg N. Variability in response to cryoprecipitate treatment for hemostatic defects in uremia. Yale J Biol Med. 1990;63(1):1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mitra B, Cameron PA, Gruen RL, Mori A, Fitzgerald M, Street A. The definition of massive transfusion in trauma: a critical variable in examining evidence for resuscitation. Eur J Emerg Med. 2011;18(3):137–42.

    Article  PubMed  Google Scholar 

  78. Pham HP, Shaz BH. Update on massive transfusion. Br J Anaesth. 2013;111(Suppl 1):i71–82.

    Article  PubMed  Google Scholar 

  79. Hess JR, Holcomb JB, Hoyt DB. Damage control resuscitation: the need for specific blood products to treat the coagulopathy of trauma. Transfusion. 2006;46(5):685–6.

    Article  PubMed  Google Scholar 

  80. Radwan ZA, Bai Y, Matijevic N, del Junco DJ, McCarthy JJ, Wade CE, et al. An emergency department thawed plasma protocol for severely injured patients. JAMA Surg. 2013;148(2):170–5.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18(5):518.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cherkas D. Traumatic hemorrhagic shock: advances in fluid management. Emerg Med Pract. 2011;13(11):1–19; quiz -20.

    PubMed  Google Scholar 

  84. Barak M, Rudin M, Vofsi O, Droyan A, Katz Y. Fluid administration during abdominal surgery influences on coagulation in the postoperative period. Curr Surg. 2004;61(5):459–62.

    Article  PubMed  Google Scholar 

  85. Ferrara A, MacArthur JD, Wright HK, Modlin IM, McMillen MA. Hypothermia and acidosis worsen coagulopathy in the patient requiring massive transfusion. Am J Surg. 1990;160(5):515–8.

    Article  CAS  PubMed  Google Scholar 

  86. Aboudara MC, Hurst FP, Abbott KC, Perkins RM. Hyperkalemia after packed red blood cell transfusion in trauma patients. J Trauma. 2008;64(2 Suppl):S86–91; discussion S.

    Article  CAS  PubMed  Google Scholar 

  87. Lee AC, Reduque LL, Luban NL, Ness PM, Anton B, Heitmiller ES. Transfusion-associated hyperkalemic cardiac arrest in pediatric patients receiving massive transfusion. Transfusion. 2014;54(1):244–54.

    Article  PubMed  Google Scholar 

  88. Carvalhana V, Burry L, Lapinsky SE. Management of severe hyperkalemia without hemodialysis: case report and literature review. J Crit Care. 2006;21(4):316–21.

    Article  PubMed  Google Scholar 

  89. Reynolds BR, Forsythe RM, Harbrecht BG, Cuschieri J, Minei JP, Maier RV, et al. Hypothermia in massive transfusion: have we been paying enough attention to it? J Trauma Acute Care Surg. 2012;73(2):486–91.

    Article  PubMed  Google Scholar 

  90. Watts DD, Trask A, Soeken K, Perdue P, Dols S, Kaufmann C. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma. 1998;44(5):846–54.

    Article  CAS  PubMed  Google Scholar 

  91. Sihler KC, Napolitano LM. Complications of massive transfusion. Chest. 2010;137(1):209–20.

    Article  PubMed  Google Scholar 

  92. Bunker JP, Bendixen HH, Murphy AJ. Hemodynamic effects of intravenously administered sodium citrate. N Engl J Med. 1962;266:372–7.

    Article  CAS  PubMed  Google Scholar 

  93. King KE, Shirey RS, Thoman SK, Bensen-Kennedy D, Tanz WS, Ness PM. Universal leukoreduction decreases the incidence of febrile nonhemolytic transfusion reactions to RBCs. Transfusion. 2004;44(1):25–9.

    Article  PubMed  Google Scholar 

  94. Paglino JC, Pomper GJ, Fisch GS, Champion MH, Snyder EL. Reduction of febrile but not allergic reactions to RBCs and platelets after conversion to universal prestorage leukoreduction. Transfusion. 2004;44(1):16–24.

    Article  PubMed  Google Scholar 

  95. Bowden RA, Slichter SJ, Sayers M, Weisdorf D, Cays M, Schoch G, et al. A comparison of filtered leukocyte-reduced and cytomegalovirus (CMV) seronegative blood products for the prevention of transfusion-associated CMV infection after marrow transplant. Blood. 1995;86(9):3598–603.

    Article  CAS  PubMed  Google Scholar 

  96. Josephson CD, Caliendo AM, Easley KA, Knezevic A, Shenvi N, Hinkes MT, et al. Blood transfusion and breast milk transmission of cytomegalovirus in very low-birth-weight infants: a prospective cohort study. JAMA Pediatr. 2014;168(11):1054–62.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Fried MR, Eastlund T, Christie B, Mullin GT, Key NS. Hypotensive reactions to white cell-reduced plasma in a patient undergoing angiotensin-converting enzyme inhibitor therapy. Transfusion. 1996;36(10):900–3.

    Article  CAS  PubMed  Google Scholar 

  98. Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988-2004. Clin Infect Dis. 2010;50(11):1439–47.

    Article  PubMed  Google Scholar 

  99. Strauss RG. Data-driven blood banking practices for neonatal RBC transfusions. Transfusion. 2000;40(12):1528–40.

    Article  CAS  PubMed  Google Scholar 

  100. Patidar GK, Joshi A, Marwaha N, Prasad R, Malhotra P, Sharma RR, et al. Serial assessment of biochemical changes in irradiated red blood cells. Transfus Apher Sci. 2014;50(3):479–87.

    Article  PubMed  Google Scholar 

  101. Swindell CG, Barker TA, McGuirk SP, Jones TJ, Barron DJ, Brawn WJ, et al. Washing of irradiated red blood cells prevents hyperkalaemia during cardiopulmonary bypass in neonates and infants undergoing surgery for complex congenital heart disease. Eur J Cardiothorac Surg. 2007;31(4):659–64.

    Article  PubMed  Google Scholar 

  102. Hansen AL, Turner TR, Kurach JD, Acker JP. Quality of red blood cells washed using a second wash sequence on an automated cell processor. Transfusion. 2015;55(10):2415–21.

    Article  CAS  PubMed  Google Scholar 

  103. Brecher ME, Taswell HF. Paroxysmal nocturnal hemoglobinuria and the transfusion of washed red cells. A myth revisited. Transfusion. 1989;29(8):681–5.

    Article  CAS  PubMed  Google Scholar 

  104. Crookston KP, Reiner AP, Cooper LJ, Sacher RA, Blajchman MA, Heddle NM. RBC T activation and hemolysis: implications for pediatric transfusion management. Transfusion. 2000;40(7):801–12.

    Article  CAS  PubMed  Google Scholar 

  105. Eder AF, Manno CS. Does red-cell T activation matter? Br J Haematol. 2001;114(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  106. Boralessa H, Modi N, Cockburn H, Malde R, Edwards M, Roberts I, et al. RBC T activation and hemolysis in a neonatal intensive care population: implications for transfusion practice. Transfusion. 2002;42(11):1428–34.

    Article  CAS  PubMed  Google Scholar 

  107. Copelovitch L, Kaplan BS. Streptococcus pneumoniae-associated hemolytic uremic syndrome. Pediatr Nephrol. 2008;23(11):1951–6.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Roseff SE. Pediatric transfusion: a physician’s handbook. 3rd ed. Gottschall J, editor. Bethesda: AABB; 2009. 228 p.

    Google Scholar 

  109. Fabricant L, Kiraly L, Wiles C, Differding J, Underwood S, Deloughery T, et al. Cryopreserved deglycerolized blood is safe and achieves superior tissue oxygenation compared with refrigerated red blood cells: a prospective randomized pilot study. J Trauma Acute Care Surg. 2013;74(2):371–6; discussion 6–7.

    Article  CAS  PubMed  Google Scholar 

  110. Hampton DA, Wiles C, Fabricant LJ, Kiraly L, Differding J, Underwood S, et al. Cryopreserved red blood cells are superior to standard liquid red blood cells. J Trauma Acute Care Surg. 2014;77(1):20–7; discussion 6–7.

    Article  CAS  PubMed  Google Scholar 

  111. Harvey AR, Basavaraju SV, Chung KW, Kuehnert MJ. Transfusion-related adverse reactions reported to the National Healthcare Safety Network Hemovigilance Module, United States, 2010 to 2012. Transfusion. 2015;55:709–18.

    Article  PubMed  Google Scholar 

  112. US. Centers for Disease Control and Prevention. The National Healthcare Safety Network (NHSN) manual: biovigilance component v2.1.3. Atlanta: Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention; 2014. p. 1–31.

    Google Scholar 

  113. Eder AF, Dy BA, Perez JM, Rambaud M, Benjamin RJ. The residual risk of transfusion-related acute lung injury at the American Red Cross (2008–2011): limitations of a predominantly male-donor plasma mitigation strategy. Transfusion. 2013;53(7):1442–9.

    Article  PubMed  Google Scholar 

  114. Vaccines, blood & biologics: fatalities reported to FDA following blood collection and transfusion: annual summary for fiscal year 2016: U.S. Food and Drug Administration; 2017. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/SafetyAvailability/ReportaProblem/TransfusionDonationFatalities/UCM598243.pdf.

  115. Hendrickson JE, Roubinian NH, Chowdhury D, Brambilla D, Murphy EL, Wu Y, et al. Incidence of transfusion reactions: a multicenter study utilizing systematic active surveillance and expert adjudication. Transfusion. 2016;56(10):2587–96.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Li G, Rachmale S, Kojicic M, Shahjehan K, Malinchoc M, Kor DJ, et al. Incidence and transfusion risk factors for transfusion-associated circulatory overload among medical intensive care unit patients. Transfusion. 2011;51(2):338–43.

    Article  PubMed  Google Scholar 

  117. Janatpour KA, Kalmin ND, Jensen HM, Holland PV. Clinical outcomes of ABO-incompatible RBC transfusions. Am J Clin Pathol. 2008;129(2):276–81.

    Article  PubMed  Google Scholar 

  118. Dzik WH. New technology for transfusion safety. Br J Haematol. 2007;136(2):181–90.

    Article  PubMed  Google Scholar 

  119. Kennedy LD, Case LD, Hurd DD, Cruz JM, Pomper GJ. A prospective, randomized, double-blind controlled trial of acetaminophen and diphenhydramine pretransfusion medication versus placebo for the prevention of transfusion reactions. Transfusion. 2008;48(11):2285–91.

    Article  CAS  PubMed  Google Scholar 

  120. Yazer MH, Podlosky L, Clarke G, Nahirniak SM. The effect of prestorage WBC reduction on the rates of febrile nonhemolytic transfusion reactions to platelet concentrates and RBC. Transfusion. 2004;44(1):10–5.

    Article  PubMed  Google Scholar 

  121. Perrotta PL, Snyder EL. Non-infectious complications of transfusion therapy. Blood Rev. 2001;15(2):69–83.

    Article  CAS  PubMed  Google Scholar 

  122. Florentino-Pineda I, Blakemore LC, Thompson GH, Poe-Kochert C, Adler P, Tripi P. The effect of epsilon-aminocaproic acid on perioperative blood loss in patients with idiopathic scoliosis undergoing posterior spinal fusion: a preliminary prospective study. Spine (Phila Pa 1976). 2001;26(10):1147–51.

    Article  CAS  Google Scholar 

  123. Talano JA, Hillery CA, Gottschall JL, Baylerian DM, Scott JP. Delayed hemolytic transfusion reaction/hyperhemolysis syndrome in children with sickle cell disease. Pediatrics. 2003;111(6 Pt 1):e661–5.

    Article  PubMed  Google Scholar 

  124. Cox JV, Steane E, Cunningham G, Frenkel EP. Risk of alloimmunization and delayed hemolytic transfusion reactions in patients with sickle cell disease. Arch Intern Med. 1988;148(11):2485–9.

    Article  CAS  PubMed  Google Scholar 

  125. Uhlmann EJ, Shenoy S, Goodnough LT. Successful treatment of recurrent hyperhemolysis syndrome with immunosuppression and plasma-to-red blood cell exchange transfusion. Transfusion. 2014;54(2):384–8.

    CAS  PubMed  Google Scholar 

  126. Jacobs JF, Baumert JL, Brons PP, Joosten I, Koppelman SJ, van Pampus EC. Anaphylaxis from passive transfer of peanut allergen in a blood product. N Engl J Med. 2011;364(20):1981–2.

    Article  CAS  PubMed  Google Scholar 

  127. Gao L, Sha Y, Yuan K, Ling L, Ai D, Ying H, et al. Allergic transfusion reaction caused by the shrimp allergen of donor blood: a case report. Transfus Apher Sci. 2014;50(1):68–70.

    Article  PubMed  Google Scholar 

  128. Vassallo RR. Review: IgA anaphylactic transfusion reactions. Part I. Laboratory diagnosis, incidence, and supply of IgA-deficient products. Immunohematology. 2004;20(4):226–33.

    CAS  PubMed  Google Scholar 

  129. Wibaut B, Mannessier L, Horbez C, Coupez B, Courbon B, Mizon P, et al. Anaphylactic reactions associated with anti-Chido Antibody following platelet transfusions. Vox Sang. 1995;69(2):150–1.

    Article  CAS  PubMed  Google Scholar 

  130. Lambin P, Le Pennec PY, Hauptmann G, Desaint O, Habibi B, Salmon C. Adverse transfusion reactions associated with a precipitating anti-C4 antibody of anti-Rodgers specificity. Vox Sang. 1984;47(3):242–9.

    CAS  PubMed  Google Scholar 

  131. Hosono S, Mugishima H, Shimada M, Minato M, Okada T, Takahashi S, et al. Prediction of transfusions in extremely low-birthweight infants in the erythropoietin era. Pediatr Int. 2006;48(6):572–6.

    Article  PubMed  Google Scholar 

  132. Dewachter P, Castro S, Nicaise-Roland P, Chollet-Martin S, Le Beller C, Lillo-le-Louet A, et al. Anaphylactic reaction after methylene blue-treated plasma transfusion. Br J Anaesth. 2011;106(5):687–9.

    Article  CAS  PubMed  Google Scholar 

  133. Schrezenmeier H, Walther-Wenke G, Müller TH, Weinauer F, Younis A, Holland-Letz T, et al. Bacterial contamination of platelet concentrates: results of a prospective multicenter study comparing pooled whole blood-derived platelets and apheresis platelets. Transfusion. 2007;47(4):644–52.

    Article  PubMed  Google Scholar 

  134. Young C, Chawla A, Berardi V, Padbury J, Skowron G, Krause PJ, et al. Preventing transfusion-transmitted babesiosis: preliminary experience of the first laboratory-based blood donor screening program. Transfusion. 2012;52(7):1523–9.

    Article  PubMed  Google Scholar 

  135. Wagner SJ. Transfusion-transmitted bacterial infection: risks, sources and interventions. Vox Sang. 2004;86(3):157–63.

    Article  CAS  PubMed  Google Scholar 

  136. Stramer SL, Notari EP, Krysztof DE, Dodd RY. Hepatitis B virus testing by minipool nucleic acid testing: does it improve blood safety? Transfusion. 2013;53(10 Pt 2):2449–58.

    Article  CAS  PubMed  Google Scholar 

  137. Zou S, Stramer SL, Dodd RY. Donor testing and risk: current prevalence, incidence, and residual risk of transfusion-transmissible agents in US allogeneic donations. Transfus Med Rev. 2012;26(2):119–28.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Hensch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hensch, L. (2021). Blood Components. In: Teruya, J. (eds) Management of Bleeding Patients. Springer, Cham. https://doi.org/10.1007/978-3-030-56338-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56338-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56337-0

  • Online ISBN: 978-3-030-56338-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics