Skip to main content

Blood Components

  • Chapter
  • First Online:
Management of Bleeding Patients
  • 1541 Accesses

Abstract

Blood component therapy has been the mainstay of transfusion medicine for many years. These components are obtained by collection of whole blood or by apheresis of a specific component from screened, volunteer donors. All units are screened for hepatitis B, hepatitis C, human immunodeficiency virus, human T-cell lymphotropic virus, and syphilis. Whole blood can be processed into four basic components in the United States: red blood cells, platelets, plasma, and cryoprecipitate. Each of these components has an important role to play in hemostasis. While advancements in collection techniques and our enhanced ability to detect infection have improved the quality and safety of our blood supply, it is important to remember that transfusion is not without risk. It is therefore paramount that we do our best to ensure that each patient receive the correct product and dose when transfusion is necessary. This chapter highlights the blood components that are used to maintain hemostasis, including indications for use, modifications, and adverse reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guillaud C, Loustau V, Michel M. Hemolytic anemia in adults: main causes and diagnostic procedures. Expert Rev Hematol. 2012;5(2):229–41.

    Article  CAS  PubMed  Google Scholar 

  2. Liesveld JL, Rowe JM, Lichtman MA. Variability of the erythropoietic response in autoimmune hemolytic anemia: analysis of 109 cases. Blood. 1987;69(3):820–6.

    CAS  PubMed  Google Scholar 

  3. Conley CL, Lippman SM, Ness PM, Petz LD, Branch DR, Gallagher MT. Autoimmune hemolytic anemia with reticulocytopenia and erythroid marrow. N Engl J Med. 1982;306(5):281–6.

    Article  CAS  PubMed  Google Scholar 

  4. Nester T, Jain S, Poisson J. Hemotherapy Decisions and Their Outcomes. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical Manual. 18th ed. Bethesda, MD: AABB; 2014. p. 499–543.

    Google Scholar 

  5. Carson JL, Grossman BJ, Kleinman S, Tinmouth AT, Marques MB, Fung MK, et al. Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann Intern Med. 2012;157(1):49–58.

    Article  PubMed  Google Scholar 

  6. ARC, AABB, ABC, ASBP. Circular of information for the use of human blood and blood components. Bethesda, MD: AABB; 2013.

    Google Scholar 

  7. Dumont L, Papari M, Aronson C, Dumont D. Whole-Blood Collection and Component Processing. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical Manual. 18th ed. Bethesda, MD: AABB; 2014. p. 135–65.

    Google Scholar 

  8. Levitt J, editor. Standards for blood banks and transfusion services. 29th ed. Bethesda, MD: AABB; 2014.

    Google Scholar 

  9. Dunbar N. Storage, monitoring, pretransfusion processing and distribution of blood components. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical Manual. 18th ed. Bethesda, MD: AABB; 2014. p. 213–29.

    Google Scholar 

  10. Hess JR. Red cell changes during storage. Transfus Apher Sci. 2010;43(1):51–9.

    Article  PubMed  Google Scholar 

  11. Beutler E, Meul A, Wood LA. Depletion and regeneration of 2,3-diphosphoglyceric acid in stored red blood cells. Transfusion. 1969;9(3):109–15.

    Article  CAS  PubMed  Google Scholar 

  12. Valeri CR, Collins FB. The physiologic effect of transfusing preserved red cells with low 2,3-diphosphoglycerate and high affinity for oxygen. Vox Sang. 1971;20(5):397–403.

    Article  CAS  PubMed  Google Scholar 

  13. Nogueira D, Rocha S, Abreu E, Costa E, Santos-Silva A. Biochemical and cellular changes in leukocyte-depleted red blood cells stored for transfusion. Transfus Med Hemother. 2015;42(1):46–51.

    PubMed  Google Scholar 

  14. Dutton RP, Shih D, Edelman BB, Hess J, Scalea TM. Safety of uncrossmatched type-O red cells for resuscitation from hemorrhagic shock. J Trauma. 2005;59(6):1445–9.

    Article  PubMed  Google Scholar 

  15. Josephson C, Meyer E. Neonatal and Pediatric Transfusion Practice. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical Manual. 18th ed. Bethesda, MD: AABB; 2014. p. 571–97.

    Google Scholar 

  16. Maynard K. Administration of Blood Components. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical Manual. 18th ed. Bethesda, MD: AABB; 2014. p. 545–59.

    Google Scholar 

  17. Ryden SE, Oberman HA. Compatibility of common intravenous solutions with CPD blood. Transfusion. 1975;15(3):250–5.

    Article  CAS  PubMed  Google Scholar 

  18. Albert K, van Vlymen J, James P, Parlow J. Ringer's lactate is compatible with the rapid infusion of AS-3 preserved packed red blood cells. Can J Anaesth. 2009;56(5):352–6.

    Article  PubMed  Google Scholar 

  19. Lorenzo M, Davis JW, Negin S, Kaups K, Parks S, Brubaker D, et al. Can Ringer's lactate be used safely with blood transfusions? Am J Surg. 1998;175(4):308–10.

    Article  CAS  PubMed  Google Scholar 

  20. Eder A, Muniz M. Allogeneic and Autologous Blood Donor Selection. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical Manual. 18th ed. Bethesda, MD: AABB; 2014. p. 117–34.

    Google Scholar 

  21. Ghiglione M, Puca K. Patient Blood Management. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical Manual. 18th ed. Bethesda, MD: AABB; 2014. p. 599–629.

    Google Scholar 

  22. Goldberg J, Paugh TA, Dickinson TA, Fuller J, Paone G, Theurer PF, et al. Greater volume of acute normovolemic hemodilution may aid in reducing blood transfusions after cardiac surgery. Ann Thorac Surg. 2015;100(5):1581–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ashworth A, Klein AA. Cell salvage as part of a blood conservation strategy in anaesthesia. Br J Anaesth. 2010;105(4):401–16.

    Article  CAS  PubMed  Google Scholar 

  24. Lasalle-Williams M, Nuss R, Le T, Cole L, Hassell K, Murphy JR, et al. Extended red blood cell antigen matching for transfusions in sickle cell disease: a review of a 14-year experience from a single center (CME). Transfusion. 2011;51(8):1732–9.

    Article  PubMed  Google Scholar 

  25. Miller ST, Kim HY, Weiner DL, Wager CG, Gallagher D, Styles LA, et al. Red blood cell alloimmunization in sickle cell disease: prevalence in 2010. Transfusion. 2013;53(4):704–9.

    Article  PubMed  Google Scholar 

  26. Yawn BP, Buchanan GR, Afenyi-Annan AN, Ballas SK, Hassell KL, James AH, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312(10):1033–48.

    Article  PubMed  CAS  Google Scholar 

  27. Goel R, Ness PM, Takemoto CM, Krishnamurti L, King KE, Tobian AA. Platelet transfusions in platelet consumptive disorders are associated with arterial thrombosis and in-hospital mortality. Blood. 2015;125(9):1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wagner SJ, Vassallo R, Skripchenko A, Einarson M, Seetharaman S, Moroff G. The influence of simulated shipping conditions (24- or 30-hr interruption of agitation) on the in vitro properties of apheresis platelets during 7-day storage. Transfusion. 2008;48(6):1072–80.

    Article  CAS  PubMed  Google Scholar 

  29. Vassallo RR, Wagner SJ, Einarson M, Nixon J, Ziegler D, Moroff G. Maintenance of in vitro properties of leukoreduced whole blood-derived pooled platelets after a 24-hour interruption of agitation. Transfusion. 2009;49(10):2131–5.

    Article  CAS  PubMed  Google Scholar 

  30. Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. The Trial to Reduce Alloimmunization to Platelets Study Group. N Engl J Med 1997;337(26):1861–9

    Google Scholar 

  31. Rebulla P. Formulae for the definition of refractoriness to platelet transfusion. Transfus Med. 1993;3(1):91–3.

    Article  CAS  PubMed  Google Scholar 

  32. Rebulla P. A mini-review on platelet refractoriness. Haematologica. 2005;90(2):247–53.

    PubMed  Google Scholar 

  33. Hod E, Schwartz J. Platelet transfusion refractoriness. Br J Haematol. 2008;142(3):348–60.

    Article  PubMed  Google Scholar 

  34. Kekomäki S, Volin L, Koistinen P, Koivunen E, Koskimies S, Ruutu T, et al. Successful treatment of platelet transfusion refractoriness: the use of platelet transfusions matched for both human leucocyte antigens (HLA) and human platelet alloantigens (HPA) in alloimmunized patients with leukaemia. Eur J Haematol. 1998;60(2):112–8.

    Article  PubMed  Google Scholar 

  35. Jia Y, Li W, Liu N, Zhang K, Gong Z, Li D, et al. Prevalence of platelet-specific antibodies and efficacy of crossmatch-compatible platelet transfusions in refractory patients. Transfus Med. 2014;24(6):406–10.

    Article  CAS  PubMed  Google Scholar 

  36. Kekomäki R, Elfenbein G, Gardner R, Graham-Pole J, Mehta P, Gross S. Improved response of patients refractory to random-donor platelet transfusions by intravenous gamma globulin. Am J Med. 1984;76(3A):199–203.

    Article  PubMed  Google Scholar 

  37. Sink B. Administration of Blood Components. In: Fung M, Grossman B, Hillyer C, Westhoff C, editors. Technical Manual. 18th ed. Bethesda, MD: AABB; 2014. p. 617–29.

    Google Scholar 

  38. Slichter SJ, Christoffel T, Corson J, Jones MK, Pellham E, Bolgiano D. Effects of pretransfusion warming of platelets to 35 degrees C on posttransfusion platelet viability. Transfusion. 2009;49(11):2319–25.

    Article  PubMed  Google Scholar 

  39. Northup PG, Caldwell SH. Coagulation in liver disease: a guide for the clinician. Clin Gastroenterol Hepatol. 2013;11(9):1064–74.

    Article  PubMed  Google Scholar 

  40. De Caterina M, Tarantino G, Farina C, Arena A, di Maro G, Esposito P, et al. Haemostasis unbalance in Pugh-scored liver cirrhosis: characteristic changes of plasma levels of protein C versus protein S. Haemostasis. 1993;23(4):229–35.

    PubMed  Google Scholar 

  41. Abdel-Wahab OI, Healy B, Dzik WH. Effect of fresh-frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities. Transfusion. 2006;46(8):1279–85.

    Article  PubMed  Google Scholar 

  42. Wada H, Thachil J, Di Nisio M, Mathew P, Kurosawa S, Gando S, et al. Guidance for diagnosis and treatment of DIC from harmonization of the recommendations from three guidelines. J Thromb Haemost. 2013.

    Google Scholar 

  43. Chowdary P, Chowdhury P, Saayman AG, Paulus U, Findlay GP, Collins PW. Efficacy of standard dose and 30 ml/kg fresh frozen plasma in correcting laboratory parameters of haemostasis in critically ill patients. Br J Haematol. 2004;125(1):69–73.

    Article  PubMed  Google Scholar 

  44. Ansell J, Hirsh J, Poller L, Bussey H, Jacobson A, Hylek E. The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126(3 Suppl):204S–33S.

    Article  CAS  PubMed  Google Scholar 

  45. Schwartz J, Winters JL, Padmanabhan A, Balogun RA, Delaney M, Linenberger ML, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J Clin Apher. 2013;28(3):145–284.

    Article  PubMed  Google Scholar 

  46. Tholpady A, Monson J, Radovancevic R, Klein K, Bracey A. Analysis of prolonged storage on coagulation Factor (F)V, FVII, and FVIII in thawed plasma: is it time to extend the expiration date beyond 5 days? Transfusion. 2013;53(3):645–50.

    Article  CAS  PubMed  Google Scholar 

  47. Gosselin RC, Marshall C, Dwyre DM, Gresens C, Davis D, Scherer L, et al. Coagulation profile of liquid-state plasma. Transfusion. 2013;53(3):579–90.

    Article  CAS  PubMed  Google Scholar 

  48. Matijevic N, Wang YW, Cotton BA, Hartwell E, Barbeau JM, Wade CE, et al. Better hemostatic profiles of never-frozen liquid plasma compared with thawed fresh frozen plasma. J Trauma Acute Care Surg. 2013;74(1):84–90. discussion 1.

    Article  PubMed  Google Scholar 

  49. Bolliger D, Görlinger K, Tanaka KA. Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution. Anesthesiology. 2010;113(5):1205–19.

    Article  PubMed  Google Scholar 

  50. Ness PM, Perkins HA. Fibrinogen in cryoprecipitate and its relationship to factor VIII (AHF) levels. Transfusion. 1980;20(1):93–6.

    Article  CAS  PubMed  Google Scholar 

  51. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cortet M, Deneux-Tharaux C, Dupont C, Colin C, Rudigoz RC, Bouvier-Colle MH, et al. Association between fibrinogen level and severity of postpartum haemorrhage: secondary analysis of a prospective trial. Br J Anaesth. 2012;108(6):984–9.

    Article  CAS  PubMed  Google Scholar 

  53. Tahlan A, Ahluwalia J. Factor XIII: congenital deficiency factor XIII, acquired deficiency, factor XIII A-subunit, and factor XIII B-subunit. Arch Pathol Lab Med. 2014;138(2):278–81.

    Article  PubMed  Google Scholar 

  54. Fadoo Z, Merchant Q, Rehman KA. New developments in the management of congenital Factor XIII deficiency. J Blood Med. 2013;4:65–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Janson PA, Jubelirer SJ, Weinstein MJ, Deykin D. Treatment of the bleeding tendency in uremia with cryoprecipitate. N Engl J Med. 1980;303(23):1318–22.

    Article  CAS  PubMed  Google Scholar 

  56. Triulzi DJ, Blumberg N. Variability in response to cryoprecipitate treatment for hemostatic defects in uremia. Yale J Biol Med. 1990;63(1):1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mitra B, Cameron PA, Gruen RL, Mori A, Fitzgerald M, Street A. The definition of massive transfusion in trauma: a critical variable in examining evidence for resuscitation. Eur J Emerg Med. 2011;18(3):137–42.

    Article  PubMed  Google Scholar 

  58. Pham HP, Shaz BH. Update on massive transfusion. Br J Anaesth. 2013;111 Suppl 1:i71–82.

    Article  PubMed  Google Scholar 

  59. Hess JR, Holcomb JB, Hoyt DB. Damage control resuscitation: the need for specific blood products to treat the coagulopathy of trauma. Transfusion. 2006;46(5):685–6.

    Article  PubMed  Google Scholar 

  60. Radwan ZA, Bai Y, Matijevic N, del Junco DJ, McCarthy JJ, Wade CE, et al. An emergency department thawed plasma protocol for severely injured patients. JAMA Surg. 2013;148(2):170–5.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18(5):518.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cherkas D. Traumatic hemorrhagic shock: advances in fluid management. Emerg Med Pract. 2011;13(11):1–19. quiz 20.

    PubMed  Google Scholar 

  64. Barak M, Rudin M, Vofsi O, Droyan A, Katz Y. Fluid administration during abdominal surgery influences on coagulation in the postoperative period. Curr Surg. 2004;61(5):459–62.

    Article  PubMed  Google Scholar 

  65. Ferrara A, MacArthur JD, Wright HK, Modlin IM, McMillen MA. Hypothermia and acidosis worsen coagulopathy in the patient requiring massive transfusion. Am J Surg. 1990;160(5):515–8.

    Article  CAS  PubMed  Google Scholar 

  66. Aboudara MC, Hurst FP, Abbott KC, Perkins RM. Hyperkalemia after packed red blood cell transfusion in trauma patients. J Trauma. 2008;64(2 Suppl):S86–91. discussion S91.

    Article  CAS  PubMed  Google Scholar 

  67. Lee AC, Reduque LL, Luban NL, Ness PM, Anton B, Heitmiller ES. Transfusion-associated hyperkalemic cardiac arrest in pediatric patients receiving massive transfusion. Transfusion. 2014;54(1):244–54.

    Article  PubMed  Google Scholar 

  68. Carvalhana V, Burry L, Lapinsky SE. Management of severe hyperkalemia without hemodialysis: case report and literature review. J Crit Care. 2006;21(4):316–21.

    Article  PubMed  Google Scholar 

  69. Reynolds BR, Forsythe RM, Harbrecht BG, Cuschieri J, Minei JP, Maier RV, et al. Hypothermia in massive transfusion: have we been paying enough attention to it? J Trauma Acute Care Surg. 2012;73(2):486–91.

    Article  PubMed  Google Scholar 

  70. Watts DD, Trask A, Soeken K, Perdue P, Dols S, Kaufmann C. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma. 1998;44(5):846–54.

    Article  CAS  PubMed  Google Scholar 

  71. Sihler KC, Napolitano LM. Complications of massive transfusion. Chest. 2010;137(1):209–20.

    Article  PubMed  Google Scholar 

  72. Bunker JP, Bendixen HH, Murphy AJ. Hemodynamic effects of intravenously administered sodium citrate. N Engl J Med. 1962;266:372–7.

    Article  CAS  PubMed  Google Scholar 

  73. King KE, Shirey RS, Thoman SK, Bensen-Kennedy D, Tanz WS, Ness PM. Universal leukoreduction decreases the incidence of febrile nonhemolytic transfusion reactions to RBCs. Transfusion. 2004;44(1):25–9.

    Article  PubMed  Google Scholar 

  74. Paglino JC, Pomper GJ, Fisch GS, Champion MH, Snyder EL. Reduction of febrile but not allergic reactions to RBCs and platelets after conversion to universal prestorage leukoreduction. Transfusion. 2004;44(1):16–24.

    Article  PubMed  Google Scholar 

  75. Bowden RA, Slichter SJ, Sayers M, Weisdorf D, Cays M, Schoch G, et al. A comparison of filtered leukocyte-reduced and cytomegalovirus (CMV) seronegative blood products for the prevention of transfusion-associated CMV infection after marrow transplant. Blood. 1995;86(9):3598–603.

    CAS  PubMed  Google Scholar 

  76. Josephson CD, Caliendo AM, Easley KA, Knezevic A, Shenvi N, Hinkes MT, et al. Blood transfusion and breast milk transmission of cytomegalovirus in very low-birth-weight infants: a prospective cohort study. JAMA Pediatr. 2014;168(11):1054–62.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fried MR, Eastlund T, Christie B, Mullin GT, Key NS. Hypotensive reactions to white cell-reduced plasma in a patient undergoing angiotensin-converting enzyme inhibitor therapy. Transfusion. 1996;36(10):900–3.

    Article  CAS  PubMed  Google Scholar 

  78. Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988-2004. Clin Infect Dis. 2010;50(11):1439–47.

    Article  PubMed  Google Scholar 

  79. Strauss RG. Data-driven blood banking practices for neonatal RBC transfusions. Transfusion. 2000;40(12):1528–40.

    Article  CAS  PubMed  Google Scholar 

  80. Patidar GK, Joshi A, Marwaha N, Prasad R, Malhotra P, Sharma RR, et al. Serial assessment of biochemical changes in irradiated red blood cells. Transfus Apher Sci. 2014;50(3):479–87.

    Article  PubMed  Google Scholar 

  81. Swindell CG, Barker TA, McGuirk SP, Jones TJ, Barron DJ, Brawn WJ, et al. Washing of irradiated red blood cells prevents hyperkalaemia during cardiopulmonary bypass in neonates and infants undergoing surgery for complex congenital heart disease. Eur J Cardiothorac Surg. 2007;31(4):659–64.

    Article  PubMed  Google Scholar 

  82. Hansen AL, Turner TR, Kurach JD, Acker JP. Quality of red blood cells washed using a second wash sequence on an automated cell processor. Transfusion. 2015;55(10):2415–21.

    Article  CAS  PubMed  Google Scholar 

  83. Brecher ME, Taswell HF. Paroxysmal nocturnal hemoglobinuria and the transfusion of washed red cells. A myth revisited. Transfusion. 1989;29(8):681–5.

    Article  CAS  PubMed  Google Scholar 

  84. Crookston KP, Reiner AP, Cooper LJ, Sacher RA, Blajchman MA, Heddle NM. RBC T activation and hemolysis: implications for pediatric transfusion management. Transfusion. 2000;40(7):801–12.

    Article  CAS  PubMed  Google Scholar 

  85. Eder AF, Manno CS. Does red-cell T activation matter? Br J Haematol. 2001;114(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  86. Boralessa H, Modi N, Cockburn H, Malde R, Edwards M, Roberts I, et al. RBC T activation and hemolysis in a neonatal intensive care population: implications for transfusion practice. Transfusion. 2002;42(11):1428–34.

    Article  CAS  PubMed  Google Scholar 

  87. Copelovitch L, Kaplan BS. Streptococcus pneumoniae-associated hemolytic uremic syndrome. Pediatr Nephrol. 2008;23(11):1951–6.

    Article  PubMed  Google Scholar 

  88. Roseff S. Pediatric transfusion: a physician's handbook. 3rd ed. Gottschall J, ed. AABB: Bethesda, MD; 2009. 228 p.

    Google Scholar 

  89. Beckett A, Callum J, da Luz LT, Schmid J, Funk C, Glassberg E, et al. Fresh whole blood transfusion capability for Special Operations Forces. Can J Surg. 2015;58(3 Suppl 3):S153–6.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nessen SC, Eastridge BJ, Cronk D, Craig RM, Berséus O, Ellison R, et al. Fresh whole blood use by forward surgical teams in Afghanistan is associated with improved survival compared to component therapy without platelets. Transfusion. 2013;53 Suppl 1:107S–13S.

    Article  PubMed  Google Scholar 

  91. Fabricant L, Kiraly L, Wiles C, Differding J, Underwood S, Deloughery T, et al. Cryopreserved deglycerolized blood is safe and achieves superior tissue oxygenation compared with refrigerated red blood cells: a prospective randomized pilot study. J Trauma Acute Care Surg. 2013;74(2):371–6. discussion 6–7.

    Article  CAS  PubMed  Google Scholar 

  92. Hampton DA, Wiles C, Fabricant LJ, Kiraly L, Differding J, Underwood S, et al. Cryopreserved red blood cells are superior to standard liquid red blood cells. J Trauma Acute Care Surg. 2014;77(1):20–7. discussion 6–7.

    Article  CAS  PubMed  Google Scholar 

  93. Harvey AR, Basavaraju SV, Chung KW, Kuehnert MJ. Transfusion. 2014.

    Google Scholar 

  94. US. Centers for Disease Control and Prevention. The National Healthcare Safety Network (NHSN) manual: biovigilance component v2.1.3. Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention: Atlanta, GA; 2014. p. 1–31.

    Google Scholar 

  95. Eder AF, Dy BA, Perez JM, Rambaud M, Benjamin RJ. The residual risk of transfusion-related acute lung injury at the American Red Cross (2008–2011): limitations of a predominantly male-donor plasma mitigation strategy. Transfusion. 2013;53(7):1442–9.

    Article  PubMed  Google Scholar 

  96. US Food and Drug Administration. Vaccines, blood & biologics. Transfusion/donation fatalities. 2014 [cited 2015 Oct 7]. Available from: http://www.fda.gov/biologicsbloodvaccines/safetyavailability/reportaproblem/transfusiondonationfatalities/default.htm.

  97. Li G, Rachmale S, Kojicic M, Shahjehan K, Malinchoc M, Kor DJ, et al. Incidence and transfusion risk factors for transfusion-associated circulatory overload among medical intensive care unit patients. Transfusion. 2011;51(2):338–43.

    Google Scholar 

  98. Janatpour KA, Kalmin ND, Jensen HM, Holland PV. Clinical outcomes of ABO-incompatible RBC transfusions. Am J Clin Pathol. 2008;129(2):276–81.

    Article  PubMed  Google Scholar 

  99. Dzik WH. New technology for transfusion safety. Br J Haematol. 2007;136(2):181–90.

    Article  PubMed  Google Scholar 

  100. Kennedy LD, Case LD, Hurd DD, Cruz JM, Pomper GJ. A prospective, randomized, double-blind controlled trial of acetaminophen and diphenhydramine pretransfusion medication versus placebo for the prevention of transfusion reactions. Transfusion. 2008;48(11):2285–91.

    Article  CAS  PubMed  Google Scholar 

  101. Yazer MH, Podlosky L, Clarke G, Nahirniak SM. The effect of prestorage WBC reduction on the rates of febrile nonhemolytic transfusion reactions to platelet concentrates and RBC. Transfusion. 2004;44(1):10–5.

    Article  PubMed  Google Scholar 

  102. Perrotta PL, Snyder EL. Non-infectious complications of transfusion therapy. Blood Rev. 2001;15(2):69–83.

    Article  CAS  PubMed  Google Scholar 

  103. Pineda AA, Taswell HF, Brzica SM. Transfusion reaction. An immunologic hazard of blood transfusion. Transfusion. 1978;18(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  104. Talano JA, Hillery CA, Gottschall JL, Baylerian DM, Scott JP. Delayed hemolytic transfusion reaction/hyperhemolysis syndrome in children with sickle cell disease. Pediatrics. 2003;111(6 Pt 1):e661–5.

    Article  PubMed  Google Scholar 

  105. Cox JV, Steane E, Cunningham G, Frenkel EP. Risk of alloimmunization and delayed hemolytic transfusion reactions in patients with sickle cell disease. Arch Intern Med. 1988;148(11):2485–9.

    Article  CAS  PubMed  Google Scholar 

  106. Uhlmann EJ, Shenoy S, Goodnough LT. Successful treatment of recurrent hyperhemolysis syndrome with immunosuppression and plasma-to-red blood cell exchange transfusion. Transfusion. 2014;54(2):384–8.

    CAS  PubMed  Google Scholar 

  107. Jacobs JF, Baumert JL, Brons PP, Joosten I, Koppelman SJ, van Pampus EC. Anaphylaxis from passive transfer of peanut allergen in a blood product. N Engl J Med. 2011;364(20):1981–2.

    Article  CAS  PubMed  Google Scholar 

  108. Gao L, Sha Y, Yuan K, Ling L, Ai D, Ying H, et al. Allergic transfusion reaction caused by the shrimp allergen of donor blood: a case report. Transfus Apher Sci. 2014;50(1):68–70.

    Article  PubMed  Google Scholar 

  109. Vassallo RR. Review: IgA anaphylactic transfusion reactions. Part I. Laboratory diagnosis, incidence, and supply of IgA-deficient products. Immunohematology. 2004;20(4):226–33.

    CAS  PubMed  Google Scholar 

  110. Wibaut B, Mannessier L, Horbez C, Coupez B, Courbon B, Mizon P, et al. Anaphylactic reactions associated with anti-Chido Antibody following platelet transfusions. Vox Sang. 1995;69(2):150–1.

    Article  CAS  PubMed  Google Scholar 

  111. Lambin P, Le Pennec PY, Hauptmann G, Desaint O, Habibi B, Salmon C. Adverse transfusion reactions associated with a precipitating anti-C4 antibody of anti-Rodgers specificity. Vox Sang. 1984;47(3):242–9.

    Article  CAS  PubMed  Google Scholar 

  112. Shimada E, Tadokoro K, Watanabe Y, Ikeda K, Niihara H, Maeda I, et al. Anaphylactic transfusion reactions in haptoglobin-deficient patients with IgE and IgG haptoglobin antibodies. Transfusion. 2002;42(6):766–73.

    Article  CAS  PubMed  Google Scholar 

  113. Dewachter P, Castro S, Nicaise-Roland P, Chollet-Martin S, Le Beller C, Lillo-le-Louet A, et al. Anaphylactic reaction after methylene blue-treated plasma transfusion. Br J Anaesth. 2011;106(5):687–9.

    Article  CAS  PubMed  Google Scholar 

  114. Schrezenmeier H, Walther-Wenke G, Müller TH, Weinauer F, Younis A, Holland-Letz T, et al. Bacterial contamination of platelet concentrates: results of a prospective multicenter study comparing pooled whole blood-derived platelets and apheresis platelets. Transfusion. 2007;47(4):644–52.

    Article  PubMed  Google Scholar 

  115. Young C, Chawla A, Berardi V, Padbury J, Skowron G, Krause PJ, et al. Preventing transfusion-transmitted babesiosis: preliminary experience of the first laboratory-based blood donor screening program. Transfusion. 2012;52(7):1523–9.

    Article  PubMed  Google Scholar 

  116. Wagner SJ. Transfusion-transmitted bacterial infection: risks, sources and interventions. Vox Sang. 2004;86(3):157–63.

    Article  CAS  PubMed  Google Scholar 

  117. Stramer SL, Notari EP, Krysztof DE, Dodd RY. Hepatitis B virus testing by minipool nucleic acid testing: does it improve blood safety? Transfusion. 2013;53(10 Pt 2):2449–58.

    Article  CAS  PubMed  Google Scholar 

  118. Zou S, Stramer SL, Dodd RY. Donor testing and risk: current prevalence, incidence, and residual risk of transfusion-transmissible agents in US allogeneic donations. Transfus Med Rev. 2012;26(2):119–28.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Hensch M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hensch, L. (2016). Blood Components. In: Teruya, J. (eds) Management of Bleeding Patients. Springer, Cham. https://doi.org/10.1007/978-3-319-30726-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30726-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30724-4

  • Online ISBN: 978-3-319-30726-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics