Skip to main content

Analytic Traveling-Wave Solutions of the Kardar-Parisi-Zhang Interface Growing Equation with Different Kind of Noise Terms

  • Conference paper
  • First Online:
Differential and Difference Equations with Applications (ICDDEA 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 333))

Abstract

The one-dimensional Kardar-Parisi-Zhang dynamic interface growth equation with the traveling-wave Ansatz is analyzed. As a new feature additional analytic terms are added. From the mathematical point of view, these can be considered as various noise distribution functions. Six different cases were investigated among others Gaussian, Lorentzian, white or even pink noise. Analytic solutions are evaluated and analyzed for all cases. All results are expressible with various special functions Mathieu, Bessel, Airy or Whittaker functions showing a very rich mathematical structure with some common general characteristics. This study is the continuation of our former work, where the same physical phenomena was investigated with the self-similar Ansatz. The differences and similarities among the various solutions are enlightened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saito, Y.: Statistical Physics of Crystal Growth. World Scientific Press, Singapore (1996)

    Google Scholar 

  2. Kardar, M., Parisi, G., Zhang, Y.-C.: Phys. Rev. Lett. 56, 889 (1986)

    Google Scholar 

  3. Barabási, A.-L.: Fractal Concepts in Surface Growth. Press Syndicate of the University of Cambridge, New York (1995)

    MATH  Google Scholar 

  4. Hwa, T., Frey, E.: Phys. Rev. A 44, R7873 (1991)

    Google Scholar 

  5. Frey, E., Täubner, U.C., Hwa, T.: Phys. Rev. E 53, 4424 (1996)

    Google Scholar 

  6. Lässig, M.: J. Phys.: Condens. Matter 10, 9905 (1998)

    Google Scholar 

  7. Kriecherbauer, T., Krug, J.: J. Phys. A: Math. Theor. 43, 403001 (2010)

    Google Scholar 

  8. Matsushita, M., Wakita, J., Itoh, H., Rafols, I., Matsuyama, T., Sakaguchi, H., Mimura, M.: Phys. A 249, 517 (1998)

    Google Scholar 

  9. Kuramoto, Y., Tsuzki, T.: Prog. Theor. Phys. 55, 356 (1976). Sivashinsky, G.I.: Phys. D, 4, 227 (1982)

    Google Scholar 

  10. Kersner, R., Vicsek, M.: J. Phys. A: Math. Gen. 30, 2457 (1997)

    Google Scholar 

  11. Sasamoto, T., Spohn, H.: Phys. Rev. Lett. 104, 230602 (2010)

    Google Scholar 

  12. Calabrese, P., Doussal, P.L.: Phys. Rev. Lett. 106, 250603 (2011)

    Google Scholar 

  13. Kelling, J., Ódor, G., Gemming, S.: Comput. Phys. Commun. 220, 205 (2017)

    Google Scholar 

  14. Martynec, T., Klapp, S.H.L.: Phys. Rev. E 98, 042801 (2018)

    Google Scholar 

  15. Sergi, D., Camarano, A., Molina, J.M., Ortona, A., Narciso, J.: Int. J. Mod. Phys. C 27, 1650062 (2016)

    Google Scholar 

  16. Mello, B.A.: Phys. A 419, 762 (2015)

    Google Scholar 

  17. Gilding, B.H., Kersner, R.: Progress in nonlinear differential equations and their applications. In: Travelling Waves in Nonlinear Diffusion-Convection Reactions. Birkhauser Verlag, Basel-Boston-Berlin (2004)

    Google Scholar 

  18. Cross, M.C., Hohenberg, P.C.: Rev. Mod. Phys. 65, 851 (1993)

    Google Scholar 

  19. Van Saarloos, W.: Phys. Rep. 386, 29 (2003)

    Google Scholar 

  20. He, J.H., Wu, X.H.: Chaos Solitons Fractals 30, 700 (2006)

    Google Scholar 

  21. Aslan, I., Marinakis, V.: Commun. Theor. Phys. 56, 397 (2011)

    Google Scholar 

  22. Benhamidouche, N.: Electron. J. Qual. Theory Diff. Equat. 15, 1 (2008). http://www.math.u-szeged.hu/ejqtde/

  23. Sedov, L.: Similarity and Dimensional Methods in Mechanics. CRC Press, Boca Raton (1993)

    Google Scholar 

  24. Barna, I.F.: Commun. Theor. Phys. 56, 745 (2011)

    Google Scholar 

  25. Barna, I.F., László, M.: Chaos Solitons Fractals 78, 249 (2015)

    Google Scholar 

  26. Campos, D.: Chapter 16. In: Handbook on Navier-Stokes Equations, Theory and Applied Analysis, pp. 275–304. Nova Publishers, New York, (2017)

    Google Scholar 

  27. Hopf, E.: Commun. Pure Appl. Math. 3, 201 (1950)

    Google Scholar 

  28. Cole, J.D.: Quart. Appl. Math. 9, 225 (1951)

    MathSciNet  Google Scholar 

  29. Barna, I.F., Bognár, G., Guedda, M., Mátyás, L., Hriczó, K.: Math. Model. Anal. 25(2) (2020)

    Google Scholar 

  30. Barna, I.F., Bognár, G., Guedda, M., Mátyás, L., Hriczó, K. https://arxiv.org/abs/1908.09615

  31. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  32. Vallèe, O., Soares, M.: Airy Functions and Applications to Physics. World Scientific Publishing Company, Singapore (2004)

    Google Scholar 

  33. Ronveaux, A.: Heun’s Differential Equations. Oxford University Press, Oxford (1995)

    Google Scholar 

  34. McLachlan, N.W.: Theory and Applications of Mathieu Functions. Dover, New York (1964)

    Google Scholar 

  35. Meixner, J., Schäfke, F.W.: Mathieusche Funktionen und Sphäroidfunktionen. Springer, Berlin (1954)

    Google Scholar 

  36. Ascott, F.M.: Periodic Differential Equations. Pergamon Press, Oxford (1964)

    Google Scholar 

Download references

Acknowledgements

This work was supported by project no. 129257 implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the \(K \_ 18\) funding scheme. The described study was carried out as part of the EFOP-3.6.1-16-00011 “Younger and Renewing University—Innovative Knowledge City—institutional development of the University of Miskolc aiming at intelligent specialization” project implemented in the framework of the Szechenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bognár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barna, I.F., Bognár, G., Mátyás, L., Guedda, M., Hriczó, K. (2020). Analytic Traveling-Wave Solutions of the Kardar-Parisi-Zhang Interface Growing Equation with Different Kind of Noise Terms. In: Pinelas, S., Graef, J.R., Hilger, S., Kloeden, P., Schinas, C. (eds) Differential and Difference Equations with Applications. ICDDEA 2019. Springer Proceedings in Mathematics & Statistics, vol 333. Springer, Cham. https://doi.org/10.1007/978-3-030-56323-3_19

Download citation

Publish with us

Policies and ethics