Skip to main content
Log in

On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Schwartz(-Bruhat) space, the Feichtinger algebra allows for more general results with easier proofs. This review paper develops the theory of Feichtinger’s algebra in a linear and comprehensive way. The material gives an entry point into the subject and it will also bring new insight to the expert. A further goal of this paper is to show the equivalence of the many different characterizations of the Feichtinger algebra known in the literature. This task naturally guides the paper through basic properties of functions that belong to this space, over operators on it, and to aspects of its dual space. Additional results include a seemingly forgotten theorem by Reiter on Banach space isomorphisms of the Feichtinger algebra, a new identification of Feichtinger’s algebra as the unique Banach space in \(L^{1}\) with certain properties, and the kernel theorem for the Feichtinger algebra. A historical description of the development of the theory, its applications, and a list of related function space constructions is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This definition of \(\mathbf{S }_{0}(G)\) leads to some immediate questions: Why are functions \(f\in L^{1}(G)\) that satisfy (1.1) continuous? Why is the set of functions satisfying (1.1) a subspace of \(L^{1}(G)\)? Why is the integral in the norm well-defined?

  2. If G is an elementary LCA group, i.e., \(G\cong \mathbb {R}^{l}\times \mathbb {Z}^{m}\times \mathbb {T}^{n}\times F\) for some finite Abelian group F and with \(l,m,n\in \mathbb {N}_{0}\), then the Schwartz–Bruhat space \(\mathcal {S}(G)\) is a Fréchet space. Otherwise, the Schwartz–Bruhat space is a locally convex inductive limit of Fréchet spaces, i.e., an LF-space.

  3. See, for example, [8, 9, 13, 25, 26, 28, 30, 33, 54, 65, 87, 89, 90, 94, 95, 98, 119, 148,149,150,151,152].

  4. See, for example, [52, 63, 64, 67, 69, 70, 74, 87, 91, 93, 96, 97, 101, 124].

  5. In the same publication Reiter calls \(\mathbf{S }_{0}\) the canonical Segal algebra.

  6. The quasimeasuresQ(G) are the dual space of \(C_{c}(G)\cap A(G)\) with its inductive limit topology [29, Sect. 3]. One can show that \(\mathbf{S }'_{0}(G) = \{ \sigma \in Q(G) : \vert \sigma (T_{x}g)\vert < \infty \}\) for any (all) \(g\in C_{c}(G)\cap A(G)\) [41]. This motivates the name translation bounded quasimeasures for \(\mathbf{S }'_{0}(G)\).

  7. The weak\(^{*}\) topology of the dual of a Banach space is metrizable only if the Banach space is finite dimensional. If \(\mathbf{S }_{0}(G)\) is separable (e.g., if G is \(\sigma \)-compact and metrizable) then the relative weak\(^{*}\) topology on bounded sets in \(\mathbf{S }'_{0}(G)\) is metrizable and one can work with sequences. Otherwise nets have to be considered. For more on this, we refer to the book by Megginson [126].

  8. If G is \(\sigma \)-compact and metrizable then the Haar measure on \(G\times \widehat{G}\) is \(\sigma \)-finite. Hence \((L^{1}(G\times \widehat{G}))'\) can be identified with \(L^{\infty }(G\times \widehat{G})\) in the usual way. If G is a general LCA group, then the Haar measure on \(G\times \widehat{G}\) may not be \(\sigma \)-finite. In order to still have the identification of \((L^{1})'\) with \(L^{\infty }\) one redefines \(L^{\infty }\) to be the set of all mesureable functions that are locally almost everywhere bounded. I.e., every function in \(L^{\infty }\) is bounded except on a set N, where for all compact sets K the intersection \(N\cap K\) has measure zero. See [75, Sect. 2.3] and [103, Sect. 12].

References

  1. Antoine, J.-P.: Quantum mechanics beyond hilbert space. In: A. Bohm, H.-D. Doebner, P. Kileanowski (eds.) Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics, vol 504, Berlin, Springer (1998)

  2. Balan, R.: The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators. Trans. Am. Math. Soc. 360(7), 3921–3941 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames I: theory. J. Fourier Anal. Appl. 12(2), 105–143 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames. II: Gabor systems. J. Fourier Anal. Appl. 12(3), 307–344 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Balazs, P., Gröchenig, K.: A guide to localized frames and applications to Galerkin-like representations of operators. In: Pesenson, I., Mhaskar, H., Mayeli, A., Le Gia, Q., Zhou, D.-X. (eds.) Frames and other Bases in Abstract and Function Spaces, pp. 47–79. Birkhauser, Cham (2017)

    MATH  Google Scholar 

  6. Benedetto, J.J.: Spectral Synthesis. Academic Press, San Francisco (1975)

    MATH  Google Scholar 

  7. Benedetto, J.J., Zimmermann, G.: Sampling multipliers and the Poisson summation formula. J. Fourier Anal. Appl. 3(5), 505–523 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Bényi, Á., Gröchenig, K., Heil, C., Okoudjou, K.A.: Modulation spaces and a class of bounded multilinear pseudodifferential operators. J. Oper. Theory 54(2), 387–399 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Bényi, Á., Okoudjou, K.: Bilinear pseudodifferential operators on modulation spaces. J. Fourier Anal. Appl. 10(3), 301–313 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Bertrandias, J.-P., Datry, C., Dupuis, C.: Unions et intersections d’espaces \({L}^p\) invariantes par translation ou convolution. Ann. Inst. Fourier 28(2), 53–84 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Bertrandias, J.-P.: Espaces \(l^p(a)\) et \(l^p(q)\). Groupe de travail d’analyse harmonique, vol. I, pp. 1–13. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s. (1982)

  12. Bertrandias, J.-P.: Espaces \(l^p({l^\alpha })\). Groupe de travail d’analyse harmonique, vol. II, pp. IV.1–IV.12. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s. (1984)

  13. Boggiatto, P.: Localization operators with \({L}^p\) symbols on modulation spaces. In: Advances in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 155, pp. 149–163. Birkhäuser, Basel (2004)

  14. Bonsall, F.F.: Decompositions of functions as sums of elementary functions. Q. J. Math. Oxford Ser. 2(37), 129–136 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Bonsall, F.: A general atomic decomposition theorem and Banach’s closed range theorem. Q. J. Math. Oxford Ser. (2) 42(165), 9–14 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Bourbaki, N.: Éléments de mathématique. XXXII: Théories spectrales. Chap. I-II. Algèbres normées. Groupes localement compacts commutatifs. Actualités Sci. et Ind. 1332. Hermann & Cie, Paris (1967)

  17. Bowers, A., Kalton, N.J.: An Introductory Course in Functional Analysis. Universitext. Springer, New York (2014). With a foreword by Gilles Godefroy

    MATH  Google Scholar 

  18. Bruhat, F.: Distributions sur un groupe localement compact et applications à l etude des représentations des groupes \(p\)-adiques. Bull. Soc. Math. France 89, 43–75 (1961)

    MathSciNet  MATH  Google Scholar 

  19. Cartier, P.: Über einige Integralformeln in der Theorie der quadratischen Formen. Math. Z. 84, 93–100 (1964)

    MathSciNet  MATH  Google Scholar 

  20. Christensen, J.G., Mayeli, A., Ólafsson, G.: Coorbit description and atomic decomposition of Besov spaces. Numer. Funct. Anal. Optim. 33(7–9), 847–871 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Christensen, O.: Atomic decomposition via projective group representations. Rocky Mountain J. Math. 26(4), 1289–1312 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, 2nd edn. Birkhäuser, Cham (2016)

    Google Scholar 

  23. Civan, G.: Identification of Operators on Elementary Locally Compact Abelian Groups. PhD thesis (2015)

  24. Cordero, E., Feichtinger, H.G., Luef, F.: Banach Gelfand triples for Gabor analysis. Pseudo-differential Operators. Lecture Notes in Mathematics, vol. 1949, pp. 1–33. Springer, Berlin (2008)

  25. Cordero, E., Gröchenig, K.: Time-frequency analysis of localization operators. J. Funct. Anal. 205(1), 107–131 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Cordero, E., Nicola, F.: Pseudodifferential operators on \(l^p\), Wiener amalgam and modulation spaces. Int. Math. Res. Not. 2010(10), 1860–1893 (2010)

    MATH  Google Scholar 

  27. Cordero, E., Nicola, F.: Kernel theorems for modulation spaces. J. Fourier Anal. Appl. (2017)

  28. Cordero, E., Tabacco, A., Wahlberg, P.: Schrödinger-type propagators, pseudodifferential operators and modulation spaces. J. Lond. Math. Soc. (2) 88(2), 375–395 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Cowling, M.G.: Some applications of Grothendieck’s theory of topological tensor products in harmonic analysis. Math. Ann. 232, 273–285 (1978)

    MathSciNet  MATH  Google Scholar 

  30. Czaja, W.: Boundedness of pseudodifferential operators on modulation spaces. J. Math. Anal. Appl. 284(1), 389–396 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Dahlke, S., Fornasier, M., Rauhut, H., Steidl, G., Teschke, G.: Generalized coorbit theory, Banach frames, and the relation to \(\alpha \)-modulation spaces. Proc. Lond. Math. Soc. 96(2), 464–506 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Dahlke, S., Steidl, G., Teschke, G.: Weighted coorbit spaces and Banach frames on homogeneous spaces. J. Fourier Anal. Appl. 10(5), 507–539 (2004)

    MathSciNet  MATH  Google Scholar 

  33. de Gosson, M.: Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Birkhäuser, Basel (2011)

    MATH  Google Scholar 

  34. De Gosson, M.: The Wigner Transform. Advanced Textbooks in Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack (2017)

  35. de la Madrid, R.: The role of the rigged Hilbert space in quantum mechanics. Eur. J. Phys. 26(2), 277–312 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Dobler, T.: Wiener Amalgam Spaces on Locally Compact Groups. Master thesis, University of Vienna (1989)

  37. Dörfler, M., Feichtinger, H.G., Gröchenig, K.: Time-frequency partitions for the Gelfand triple \(({S}_0, {L}^2,{{S}_0}^{\prime })\). Math. Scand. 98(1), 81–96 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Feichtinger, H.G.: A characterization of Wiener’s algebra on locally compact groups. Arch. Math. 29, 136–140 (1977)

    MathSciNet  MATH  Google Scholar 

  39. Feichtinger, H.G.: Eine neue Segalalgebra mit Anwendungen in der Harmonischen Analyse. In: Winterschule 1979, Internationale Arbeitstagung über Topologische Gruppen und Gruppenalgebren, pp. 23–25. University of Vienna (1979)

  40. Feichtinger, H.G.: Gewichtsfunktionen auf lokalkompakten Gruppen. Sitzungsber. d. österr. Akad. Wiss. 188, 451–471 (1979)

    MathSciNet  MATH  Google Scholar 

  41. Feichtinger, H.G.: The minimal strongly character invariant Segal algebra II, preprint (1980)

  42. Feichtinger, H.G.: Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens. C. R. Acad. Sci. Paris Ser. A-B 290(17), 791–794 (1980)

    MathSciNet  MATH  Google Scholar 

  43. Feichtinger, H.G.: A characterization of minimal homogeneous Banach spaces. Proc. Am. Math. Soc. 81(1), 55–61 (1981)

    MathSciNet  MATH  Google Scholar 

  44. Feichtinger, H.G.: Banach spaces of distributions of Wiener’s type and interpolation. In: P. Butzer, S. Nagy, E. Görlich (eds.) Proceedings of the Conference on Functional Analysis and Approximation, Oberwolfach August 1980. International Series of Numerical Mathematics, vol. 69, pp. 153–165. Birkhäuser, Boston (1981)

    Google Scholar 

  45. Feichtinger, H.G.: On a new Segal algebra. Monatshefte für Mathematik 92, 269–289 (1981)

    MathSciNet  MATH  Google Scholar 

  46. Feichtinger, H.G.: A new family of functional spaces on the Euclidean n-space. In: Proceedings of the Conference on Theory of Approximation of Functions. Teor. Priblizh (1983)

  47. Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators, Vol. I, II (Budapest, 1980). Colloquia Mathematica Societatis Janos Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983)

  48. Feichtinger, H.G.: Modulation spaces on locally compact Abelian groups. University of Vienna (1983) (preprint)

  49. Feichtinger, H.G.: Banach spaces of distributions defined by decomposition methods. II. Math. Nachr. 132, 207–237 (1987)

    MathSciNet  MATH  Google Scholar 

  50. Feichtinger, H.G.: Minimal Banach spaces and atomic representations. Publ. Math. Debrecen 34(3–4), 231–240 (1987)

    MathSciNet  MATH  Google Scholar 

  51. Feichtinger, H.G.: An elementary approach to the generalized Fourier transform. In: T. Rassias, (ed.) Topics in Mathematical Analysis. Series in Pure Mathematics, vol. 11, pp. 246–272. World Scientific Publishing (1989)

  52. Feichtinger, H.G.: Atomic characterizations of modulation spaces through Gabor-type representations. In: Proceedings of the Conference on Constructive Function Theory, Rocky Mountain Journal of Mathematics, vol. 19, pp. 113–126 (1989)

    MathSciNet  MATH  Google Scholar 

  53. Feichtinger, H.G.: Wiener amalgams over Euclidean spaces and some of their applications. In: K. Jarosz (ed.) Proceedings of the Conference on Function Spaces, Edwardsville/IL (USA) 1990. Lecture Notes in Pure and Applied Mathematics, vol. 136, pp. 123–137. Marcel Dekker (1992)

  54. Feichtinger, H.G.: Spline-type spaces in Gabor analysis. In: D.X. Zhou (ed.) Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4–8, 2001. Series Analysis, vol. 1, pp. 100–122. World Scientific Publishing, River Edge, NJ (2002)

  55. Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. In: R. Radha, M. Krishna, S. Thangavelu, (eds.) Proceedings of the International Conference on Wavelets and Applications, pp. 1–56, Chennai, January 2002, 2003. New Delhi Allied Publishers

  56. Feichtinger, H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process. 5(2), 109–140 (2006)

    MathSciNet  MATH  Google Scholar 

  57. Feichtinger, H.G.: Banach Gelfand triples for applications in physics and engineering. AIP Conference Proceeding, vol. 1146, pp. 189–228. American Institute of Physics (2009)

  58. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods I. Math. Nachr. 123, 97–120 (1985)

    MathSciNet  MATH  Google Scholar 

  59. Feichtinger, H.G., Gröchenig, K.: A unified approach to atomic decompositions via integrable group representations. In: Function Spaces and Applications (Lund, 1986). Lecture Notes in Mathematics, vol. 1302, pp. 52–73. Springer, Berlin (1988)

    Google Scholar 

  60. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)

    MathSciNet  MATH  Google Scholar 

  61. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions. II. Monatsh. Math. 108(2–3), 129–148 (1989)

    MathSciNet  MATH  Google Scholar 

  62. Feichtinger, H.G., Gröchenig, K.: Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view. In: C.K. Chui (ed.) Wavelets: A Tutorial in Theory and Applications. Wavelet Analysis Applications, vol. 2, pp. 359–397. Academic Press, Boston (1992)

    MATH  Google Scholar 

  63. Feichtinger, H.G., Gröchenig, K.: Gabor frames and time-frequency analysis of distributions. J. Funct. Anal. 146(2), 464–495 (1997)

    MathSciNet  MATH  Google Scholar 

  64. Feichtinger, H.G., Gröchenig, K., Walnut, D.F.: Wilson bases and modulation spaces. Math. Nachr. 155, 7–17 (1992)

    MathSciNet  MATH  Google Scholar 

  65. Feichtinger, H.G., Helffer, B., Lamoureux, M.P., Lerner, N., Toft, J.: Pseudo-Differential Operators. Lecture Notes in Mathematics, vol. 1949. Springer, Berlin (2006)

  66. Feichtinger, H.G., Hörmann, W.: A distributional approach to generalized stochastic processes on locally compact Abelian groups. In: New Perspectives on Approximation and Sampling Theory. Festschrift in Honor of Paul Butzer’s 85th Birthday, pp. 423–446. Birkhäuser, Cham (2014)

    MATH  Google Scholar 

  67. Feichtinger, H.G., Kaiblinger, N.: Varying the time-frequency lattice of Gabor frames. Trans. Am. Math. Soc. 356(5), 2001–2023 (2004)

    MathSciNet  MATH  Google Scholar 

  68. Feichtinger, H.G., Kaiblinger, N.: Quasi-interpolation in the Fourier algebra. J. Approx. Theory 144(1), 103–118 (2007)

    MathSciNet  MATH  Google Scholar 

  69. Feichtinger, H.G., Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups. In: H.G. Feichtinger, T. Strohmer, (eds.) Gabor Analysis and Algorithms. Applied and Numerical Harmonic Analysis, pp. 233–266. Birkhäuser, Boston (1998)

    Google Scholar 

  70. Feichtinger, H.G., Luef, F.: Wiener amalgam spaces for the fundamental identity of Gabor analysis. Collect. Math. 57, 233–253 (2006)

    MathSciNet  MATH  Google Scholar 

  71. Feichtinger, H.G., Luef, F., Werther, T.: A guided tour from linear algebra to the foundations of Gabor analysis. In: Gabor and Wavelet Frames. Lecture Notes Series Institute for Mathematical Sciences (NUS), vol. 10, pp. 1–49. World Scientific Publishing, Hackensack (2007)

    MATH  Google Scholar 

  72. Feichtinger, H.G., Weisz, F.: The Segal algebra \({S}_0({R}^d)\) and norm summability of Fourier series and Fourier transforms. Monatsh. Math. 148, 333–349 (2006)

    MathSciNet  MATH  Google Scholar 

  73. Feichtinger, H.G., Weisz, F.: Wiener amalgams and pointwise summability of Fourier transforms and Fourier series. Math. Proc. Camb. Philos. Soc. 140(3), 509–536 (2006)

    MathSciNet  MATH  Google Scholar 

  74. Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications. Applied and Numerical Harmonic Analysis, pp. 123–170. Birkhäuser, Boston (1998)

    MATH  Google Scholar 

  75. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton, NJ (1989)

    MATH  Google Scholar 

  76. Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics, vol. viii. CRC Press, Boca Raton, FL (1995)

  77. Folland, G.B.: The abstruse meets the applicable: some aspects of time-frequency analysis. Proc. Indian Acad. Sci. Math. Sci. 116, 121–136 (2006)

    MathSciNet  MATH  Google Scholar 

  78. Forrest, B.E., Spronk, N., Wood, P.: Operator Segal algebras in Fourier algebras. Studia Math. 179(3), 277–295 (2007)

    MathSciNet  MATH  Google Scholar 

  79. Friedlander, F.G.: Introduction to the Theory of Distributions, 2nd edn. Cambridge University Press, Cambridge (1998). With additional material by M. Joshi

    Google Scholar 

  80. Führ, H.: Coorbit spaces and wavelet coefficient decay over general dilation groups. Trans. Am. Math. Soc. 367(10), 7373–7401 (2015)

    MathSciNet  MATH  Google Scholar 

  81. Führ, H., Voigtlaender, F.: Wavelet coorbit spaces viewed as decomposition spaces. J. Funct. Anal. 1, 80–154 (2015)

    MathSciNet  MATH  Google Scholar 

  82. Gel’fand, I.M., Vilenkin, N.Y.: Generalized Functions. Applications of Harmonic Analysis, vol. 4. Translated by Amiel Feinstein. Academic Press, New York (1964)

    Google Scholar 

  83. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 1955(16), 140 (1955)

    MATH  Google Scholar 

  84. Gröchenig, K.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112(3), 1–41 (1991)

    MathSciNet  MATH  Google Scholar 

  85. Gröchenig, K.: An uncertainty principle related to the Poisson summation formula. Studia Math. 121(1), 87–104 (1996)

    MathSciNet  MATH  Google Scholar 

  86. Gröchenig, K.: Aspects of Gabor analysis on locally compact Abelian groups. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 211–231. Birkhäuser, Boston, MA (1998)

    MATH  Google Scholar 

  87. Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA (2001)

    MATH  Google Scholar 

  88. Gröchenig, K.: Uncertainty principles for time-frequency representations. In: H.G. Feichtinger, T. Strohmer (ed.) Advances in Gabor Analysis. Applied and Numerical Harmonic Analysis, pp. 11–30. Birkhäuser, Boston (2003)

    Google Scholar 

  89. Gröchenig, K.: A pedestrian’s approach to pseudodifferential operators. In: C. Heil (ed.) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis, Volume in Honor of John J. Benedetto’s 65th Birthday, pp. 139–169. Birkhäuser, Boston, MA (2006)

  90. Gröchenig, K.: Composition and spectral invariance of pseudodifferential operators on modulation spaces. J. Anal. Math. 98, 65–82 (2006)

    MathSciNet  MATH  Google Scholar 

  91. Gröchenig, K.: Gabor frames without inequalities. Int. Math. Res. Not. (23): Art. ID rnm111, 21, (2007)

  92. Gröchenig, K.: Weight functions in time-frequency analysis. In: L. Rodino, et al. (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis. Fields Institute Communications, vol. 52, pp. 343–366. American Mathematical Society, Providence, RI (2007)

  93. Gröchenig, K.: The mystery of Gabor frames. J. Fourier Anal. Appl. 20(4), 865–895 (2014)

    MathSciNet  MATH  Google Scholar 

  94. Gröchenig, K., Heil, C.: Modulation spaces and pseudodifferential operators. Integr. Equ. Oper. Theory 34(4), 439–457 (1999)

    MathSciNet  MATH  Google Scholar 

  95. Gröchenig, K., Heil, C.: Modulation spaces as symbol classes for pseudodifferential operators. In: R.R.M. Krishna (ed.) Proceedings of International conference on wavelets and applications 2002, pp. 151–170, Chennai, India, 2003. Allied Publishers, Chennai

  96. Gröchenig, K., Leinert, M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17, 1–18 (2004)

    MathSciNet  MATH  Google Scholar 

  97. Gröchenig, K., Ortega Cerdà, J., Romero, J.L.: Deformation of Gabor systems. Adv. Math. 277(4), 388–425 (2015)

    MathSciNet  MATH  Google Scholar 

  98. Gröchenig, K., Strohmer, T.: Pseudodifferential operators on locally compact Abelian groups and Sjöstrand’s symbol class. J. Reine Angew. Math. 613, 121–146 (2007)

    MathSciNet  MATH  Google Scholar 

  99. Havin, V.P., Nikol’skij, N.K.: Commutative Harmonic Analysis II. Group Methods in Commutative Harmonic Analysis. Springer, (1998)

  100. Heil, C.: An introduction to weighted Wiener amalgams. In: Krishna, M., Radha, R., Thangavelu, S. (eds.) Wavelets and their Applications (Chennai, January 2002), pp. 183–216. Allied Publishers, New Delhi (2003)

    Google Scholar 

  101. Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113–166 (2007)

    MathSciNet  MATH  Google Scholar 

  102. Heil, C.: A Basis Theory Primer, Expanded edn. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2011)

    MATH  Google Scholar 

  103. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. I. Grundlehren der mathematischen Wissenschaften, vol. 115. Springer, Berlin (1963)

  104. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. II. Grundlehren der mathematischen Wissenschaften, vol. 152. Springer, Berlin (1970)

    MATH  Google Scholar 

  105. Heyer, H.: Random fields and hypergroups. In: Rao, M.M. (ed.) Real and Stochastic Analysis, Current Trends, pp. 85–182. World Scientific Publishing, Hackensack (2014)

    MATH  Google Scholar 

  106. Hogan, J.A., Lakey, J.D.: Embeddings and uncertainty principles for generalized modulation spaces. In: Modern Sampling Theory. Applied and Numerical Harmonic Analysis, pp. 73–105. Birkhäuser, Boston, MA (2001)

    Google Scholar 

  107. Hogan, J.A., Lakey, J.D.: Time-Frequency and Time-Scale Methods. Adaptive Decompositions, Uncertainty Principles, and Sampling. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  108. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin (2003). Distribution theory and Fourier analysis, Reprint of the second (1990) edition

  109. Hörmann, W.: Generalized Stochastic Processes and Wigner Distribution. PhD thesis, University of Vienna (1989)

  110. Ito, K.: Stationary random distributions. Mem. Coll. Sci. Univ. Kyoto Ser. A 28, 209–223 (1954)

    MathSciNet  MATH  Google Scholar 

  111. Janssen, A.J.E.M.: Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)

    MathSciNet  MATH  Google Scholar 

  112. Janssen, A.J.E.M.: Hermite function description of Feichtinger’s space \({S}_0\). J. Fourier Anal. Appl. 11(5), 577–588 (2005)

    MathSciNet  MATH  Google Scholar 

  113. Janssen, A.J.E.M.: Zak transform characterization of \(S_0\). Sampl. Theory Signal Image Process. 5(2), 141–162 (2006)

    MathSciNet  MATH  Google Scholar 

  114. Kahane, J.-P., Lemarie, P.-G.: Rieusset. Remarks on the Poisson summation formula. (Remarques sur la formule sommatoire de Poisson.). Studia Math. 109, 303–316 (1994)

    MathSciNet  MATH  Google Scholar 

  115. Kaiblinger, N.: Approximation of the Fourier transform and the dual Gabor window. J. Fourier Anal. Appl. 11(1), 25–42 (2005)

    MathSciNet  MATH  Google Scholar 

  116. Katznelson, Y.: An introduction to harmonic analysis. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  117. Keville, B.: Multidimensional Second Order Generalised Stochastic Processes on Locally Compact Abelian Groups. PhD thesis, Trinity College Dublin (2003)

  118. Kluvánek, I.: Sampling theorem in abstract harmonic analysis. Mat. v Casopis Sloven. Akad. Vied 15, 43–48 (1965)

    MathSciNet  MATH  Google Scholar 

  119. Labate, D.: Pseudodifferential operators on modulation spaces. J. Math. Anal. Appl. 262(1), 242–255 (2001)

    MathSciNet  MATH  Google Scholar 

  120. Lieb, E.H.: Integral bounds for radar ambiguity functions and Wigner distributions. J. Math. Phys. 31(3), 594–599 (1990)

    MathSciNet  MATH  Google Scholar 

  121. Liu, T.-S., van Rooij, A., Wang, J.-K.: On some group algebra modules related to Wiener’s algebra \(m_1\). Pac. J. Math. 55, 507–520 (1974)

    MATH  Google Scholar 

  122. Losert, V.: A characterization of the minimal strongly character invariant Segal algebra. Ann. Inst. Fourier (Grenoble) 30, 129–139 (1980)

    MathSciNet  MATH  Google Scholar 

  123. Luef, F.: Gabor analysis, noncommutative tori and Feichtinger’s algebra. In: Gabor and Wavelet Frames. Lecture Notes Series Institute for Mathematical Sciences (NUS), vol. 10, pp. 77–106. World Scientific Publishing, Hackensack (2007)

    Google Scholar 

  124. Luef, F.: Projective modules over non-commutative tori are multi-window Gabor frames for modulation spaces. J. Funct. Anal. 257(6), 1921–1946 (2009)

    MathSciNet  MATH  Google Scholar 

  125. Mayer, M.: Eine Einführung in die verallgemeinerte Fouriertransformation. Diplomarbeit, University of Vienna (1987)

  126. Megginson, R.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183, pp. xx+596. Springer, New York (1998)

    MATH  Google Scholar 

  127. Okoudjou, K.A.: Embedding of some classical Banach spaces into modulation spaces. Proc. Am. Math. Soc. 132(6), 1639–1647 (2004)

    MathSciNet  MATH  Google Scholar 

  128. Osborne, M.S.: On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact Abelian groups. J. Funct. Anal. 19, 40–49 (1975)

    MathSciNet  MATH  Google Scholar 

  129. Parthasarathy, K., Shravan Kumar, N.: Feichtinger’s Segal algebra on homogeneous spaces. Int. J. Math. 26(8), 9 (2015)

    MathSciNet  MATH  Google Scholar 

  130. Pfander, G.E.: Sampling of operators. J. Fourier Anal. Appl. 19(3), 612–650 (2013)

    MathSciNet  MATH  Google Scholar 

  131. Pfander, G.E., Walnut, D.F.: Measurement of time-variant channels. IEEE Trans. Inform. Theory 52(11), 4808–4820 (2006)

    MathSciNet  MATH  Google Scholar 

  132. Poguntke, D.: Gewisse Segalsche Algebren auf lokalkompakten Gruppen. Arch. Math. 33, 454–460 (1980)

    MathSciNet  MATH  Google Scholar 

  133. Quehenberger, F.: Spektralsynthese und die Segalalgebra \(S_0({\mathbb{R}}^m)\). Master’s thesis, University of Vienna (1989)

  134. Reiter, H.: \(L^1\)-Algebras and Segal Algebras. Springer, Berlin (1971)

    MATH  Google Scholar 

  135. Reiter, H.: Über den Satz von Weil-Cartier. Monatsh. Math. 86, 13–62 (1978)

    MathSciNet  MATH  Google Scholar 

  136. Reiter, H.: Metaplectic Groups and Segal Algebras. Lecture Notes in Mathematics. Springer, Berlin (1989)

    MATH  Google Scholar 

  137. Reiter, H.: On the Siegel-Weil formula. Monatsh. Math. 116, 299–330 (1993)

    MathSciNet  MATH  Google Scholar 

  138. Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact Groups. London Mathematical Society Monographs. 2nd edn., New Series, vol. 22. The Clarendon Press, Oxford University Press, New York (2000)

  139. Rieffel, M.A.: C*-algebras associated with irrational rotations. Pac. J. Math. 93, 415–429 (1981)

    MathSciNet  MATH  Google Scholar 

  140. Rieffel, M.A.: Projective modules over higher-dimensional noncommutative tori. Can. J. Math. 40(2), 257–338 (1988)

    MathSciNet  MATH  Google Scholar 

  141. Rudin, W.: Fourier Analysis on Groups. Interscience Publishers, New York (1962)

    MATH  Google Scholar 

  142. Rudin, W.: Functional Analysis, 2nd edn. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)

  143. Ryan, R.A.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, London (2002)

    MATH  Google Scholar 

  144. Schwartz, L.: Théorie des noyaux. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950, vol. 1, pp. 220–230. American Mathematical Society, Providence, RI (1952)

  145. Schwartz, L.: Théorie des Distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris (1966)

  146. Spronk, N.: Operator space structure on Feichtinger’s Segal algebra. J. Funct. Anal. 248, 152–174 (2007)

    MathSciNet  MATH  Google Scholar 

  147. Stewart, J.: Fourier transforms of unbounded measures. Can. J. Math. 31, 1281–1292 (1979)

    MathSciNet  MATH  Google Scholar 

  148. Tachizawa, K.: The boundedness of pseudodifferential operators on modulation spaces. Math. Nachr. 168, 263–277 (1994)

    MathSciNet  MATH  Google Scholar 

  149. Toft, J.: Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I. J. Funct. Anal. 207(2), 399–429 (2004)

    MathSciNet  MATH  Google Scholar 

  150. Toft, J.: Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II. Ann. Glob. Anal. Geom. 26(1), 73–106 (2004)

    MathSciNet  MATH  Google Scholar 

  151. Toft, J.: Pseudo-differential operators with symbols in modulation spaces. In: Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations. Operator Theory: Advances and Applications, vol. 205, pp. 223–234. Birkhäuser Verlag, Basel (2010)

    Google Scholar 

  152. Toft, J., Wong, M., Zhu, H. (eds.): Modern Trends in Pseudo-Differential Operators, vol. 172 (2007)

  153. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Pure and Applied Mathematics, vol. 25. Academic Press, New York (1967)

  154. Ullrich, T., Rauhut, H.: Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type. J. Funct. Anal. 11, 3299–3362 (2011)

    MathSciNet  MATH  Google Scholar 

  155. Voigtlaender, F.: Embedding Theorems for Decomposition Spaces with Applications to Wavelet Coorbit Spaces. PhD thesis, RWTH Aachen University (2015)

  156. Wahlberg, P.: The random Wigner distribution of Gaussian stochastic processes with covariance in \({S}_0 ({R}^{2d})\). J. Funct. Spaces Appl. 3(2), 163–181 (2005)

    MathSciNet  MATH  Google Scholar 

  157. Walnut, D., Pfander, F.E., Kailath, T.: Cornerstones of sampling of operator theory. In: Excursions in Harmonic Analysis, vol. 4, 291–332. Birkhäuser/Springer, Cham (2015)

    Google Scholar 

  158. Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math. 111, 143–211 (1964)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Hans G. Feichtinger for many invaluable discussions on his algebra and related topics. Furthermore, the author thanks Ole Christensen for support with the writing and the presentation of the material. Thanks also goes to Franz Luef, Jakob Lemvig, Jordy T. van Velthoven and the referees for numerous helpful comments. The author gratefully acknowledges that this work was partially carried out during the tenure of an ERCIM ‘Alain Bensoussan’ Fellowship Programme at NTNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads S. Jakobsen.

Additional information

Communicated by Karlheinz Gröchenig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakobsen, M.S. On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra. J Fourier Anal Appl 24, 1579–1660 (2018). https://doi.org/10.1007/s00041-018-9596-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-9596-4

Keywords

Mathematics Subject Classification

Navigation