Skip to main content

A Transformation of Hybrid Petri Nets with Stochastic Firings into a Subclass of Stochastic Hybrid Automata

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12229))

Included in the following conference series:

Abstract

We present a transformation of Hybrid Petri nets extended with stochastic firings (HPnGs) into a subclass of Stochastic Hybrid Automata (SHA), thereby making HPnGs amenable to techniques from that domain. While (non-stochastic) Hybrid Petri nets have previously been transformed into Hybrid Automata, we consider also stochastic aspects and transform HPnGs into Singular Automata, which are Hybrid Automata restricted to piecewise constant derivatives for continuous variables, extended by random clocks. We implemented our transformation and show its usefulness by comparing results for time-bounded reachability for HPnGs extended with non-determinism on the one hand, and for the transformed SHAs using the ProHVer tool on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/jannikhuels/hpnmg.

  2. 2.

    http://www.modestchecker.net.

  3. 3.

    http://www-verimag.imag.fr/%7Efrehse/phaver_web/index.html.

References

  1. Allam, M., Alla, H.: Modelling production systems by hybrid automata and hybrid petri nets. IFAC Proc. Vol. 30(6), 343–348 (1997)

    Article  Google Scholar 

  2. Alur, R., Courcoubetis, C.A., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bohnenkamp, H., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a compositional modeling formalism for hard and softly timed systems. IEEE Trans. Softw. Eng. 32(10), 812–830 (2006)

    Article  Google Scholar 

  4. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_9

    Chapter  Google Scholar 

  5. Cauchi, N., Abate, A.: \(\sf StocHy\): automated verification and synthesis of stochastic processes. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 247–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_14

    Chapter  MATH  Google Scholar 

  6. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: stochastic automata. Inf. Comput. 203(1), 1–38 (2005)

    Article  Google Scholar 

  7. David, R., Alla, H.: On hybrid petri nets. Discrete Event Dyn. Syst. 11(1), 9–40 (2001)

    Article  MathSciNet  Google Scholar 

  8. Davis, M.: Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. Roy. Stat. Soc. Ser. B (Methodol.) 46(3), 353–388 (1984)

    MATH  Google Scholar 

  9. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 90–109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_6

    Chapter  Google Scholar 

  10. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_17

    Chapter  MATH  Google Scholar 

  11. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: 14th ACM International Conference on Hybrid Systems: Computation and Control. HSCC 2011, pp. 43–52. ACM, New York (2011)

    Google Scholar 

  12. Ghasemieh, H., Remke, A., Haverkort, B.: Analysis of a sewage treatment facility using hybrid petri nets. In: 7th EAI International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2013. pp. 165–174. ICST (2013)

    Google Scholar 

  13. Gribaudo, M., Remke, A.: Hybrid Petri nets with general one-shot transitions. Perform. Eval. 105, 22–50 (2016)

    Article  Google Scholar 

  14. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for stochastic timed automata. ECEASST 70 (2014)

    Google Scholar 

  15. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Meth. Syst. Des. 43(2), 191–232 (2013)

    Article  Google Scholar 

  16. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid systems, NATO ASI Series, vol. 170, pp. 265–292. Springer, Berlin, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

    Article  MathSciNet  Google Scholar 

  18. Hüls, J., Pilch, C., Schinke, P., Delicaris, J., Remke, A.: State-space construction of hybrid petri nets with multiple stochastic firings. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 182–199. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8_11

    Chapter  Google Scholar 

  19. Hüls, J., Remke, A.: Model checking HPnGs in multiple dimensions: representing state sets as convex polytopes. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019. LNCS, vol. 11535, pp. 148–166. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21759-4_9

    Chapter  Google Scholar 

  20. Jongerden, M., Hüls, J., Haverkort, B., Remke, A.: Assessing the cost of energy independence. In: 2016 IEEE International Energy Conference, ENERGYCON, pp. 1–6. IEEE (2016)

    Google Scholar 

  21. Koutsoukos, X.D., Riley, D.: Computational methods for verification of stochastic hybrid systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 38(2), 385–396 (2008)

    Article  Google Scholar 

  22. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002)

    Article  MathSciNet  Google Scholar 

  23. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Formal Meth. Syst. Des. 29(1), 33–78 (2006)

    Article  Google Scholar 

  24. Motallebi, H., Azgomi, M.A.: Modeling and verification of hybrid dynamic systems using multisingular hybrid Petri nets. Theor. Comput. Sci. 446, 48–74 (2012)

    Article  MathSciNet  Google Scholar 

  25. Pilch, C., Hartmanns, A., Remke, A.: Classic and non-prophetic model checking for hybrid petri nets with stochastic firings. In: 23rd ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2020. ACM, New York (2020)

    Google Scholar 

  26. Pilch, C., Remke, A.: Statistical model checking for hybrid petri nets with multiple general transitions. In: 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2017, pp. 475–486. IEEE (2017)

    Google Scholar 

  27. Prandini, M., Hu, J.: A stochastic approximation method for reachability computations. In: Blom, H., Lygeros, J. (eds.) Stochastic Hybrid Systems: Theory and Safety Critical Applications, LNCIS, vol. 337, pp. 107–139. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11587392_4

    Chapter  Google Scholar 

  28. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: Formal Abstractions of Uncountable-STate STochastic processes. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_23

  29. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45352-0_5

    Chapter  Google Scholar 

  30. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification for probabilistic hybrid systems. Eur. J. Control 18(6), 572–587 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Pilch .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Parametric Location Tree

Fig. 4.
figure 4

Parametric location tree for the feasibility study example

Figure 4 shows the Parametric Location Tree for the model of the feasibility study (r.t. Sect. 6). t is the entry time into each parametric location, x denotes the fluid level of the continuous place \(P^c_\text {battery}\) and \(\dot{x}\) its drift upon entry. Further \(s_0\) denotes the random variable, which describes the firing of \(T^G_\text {switch}\), and similarly \(s_1\) denotes the one of \(T^G_{\text {stop}\_\text {high}}\). Every node shows how many discrete places contain one token each and which non-continuous transitions are enabled. The restrictions on the random variables describe the values which the random variables need to take to get into the specific parametric location.

The PLT is split right at its root (\(\varLambda _1\)) into two sub-trees, depending on whether \(T^G_\text {switch}\) fires before or after \(P^c_\text {battery}\) reaches zero. If it fires within 9 time units, this leads us to \(\varLambda _2\) and otherwise to \(\varLambda _6\), via \(\varLambda _3\). From there, in both sub-trees the non-deterministic choice is taken, further splitting the tree. If \(T^I_{\text {choose}\_\text {high}}\) is chosen (\(\varLambda _4\) and \(\varLambda _{11}\)), \(T^G_{\text {stop}\_\text {high}}\) becomes enabled and either it fires (\(\varLambda _7, \varLambda _{13}\)) or \(P^c_\text {battery}\) reaches its upper boundary (\(\varLambda _8, \varLambda _{14}\)). If instead \(T^I_{\text {choose}\_\text {low}}\) is chosen (\(\varLambda _5, \varLambda _{12}\)), \(T^D_{\text {stop}\_\text {low}}\) becomes enabled and is might fire (\(\varLambda _9, \varLambda _{15}\)). Only if \(P^c_\text {battery}\) has not been empty before (\(\varLambda _5\)), it can reach its upper boundary before \(T^D_{\text {stop}\_\text {low}}\) fires (\(\varLambda _{10}\)).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pilch, C., Krause, M., Remke, A., Ábrahám, E. (2020). A Transformation of Hybrid Petri Nets with Stochastic Firings into a Subclass of Stochastic Hybrid Automata. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds) NASA Formal Methods. NFM 2020. Lecture Notes in Computer Science(), vol 12229. Springer, Cham. https://doi.org/10.1007/978-3-030-55754-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55754-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55753-9

  • Online ISBN: 978-3-030-55754-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics