Skip to main content

Big Spatial Flow Data Analytics

  • Chapter
  • First Online:
Handbook of Big Geospatial Data

Abstract

Spatial flow data represent meaningful interaction activities between two regions, such as exchange of population, goods, capital, and information. In recent years, the widespread adoption of location-aware technologies such as the GPS-enabled smartphones amass flow data at individual level, along with much finer spatiotemporal granularity and abundant semantic information. The increasing availability of big spatial flow has brought us with unprecedented opportunities to study all kinds of spatial interaction phenomena from new perspectives, as well as intellectual challenges to develop visualization and analytical methods to handle its unique geographic and geometric characteristics. This chapter introduces a collection of the latest methods and techniques specifically designed for big spatial flow data. Three major families of methods are reviewed, namely geovisualization, spatial data mining, and spatial statistics, to give readers a comprehensive picture of the available approaches that serve different study purposes. One representative approach from each family is selected to elaborate, so the readers can gain a deeper understanding to readily use the methods and potentially develop their own in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldstadt J, Getis A (2006) Using AMOEBA to create a spatial weights matrix and identify spatial clusters. Geographical Analysis 38(4):327–343

    Article  Google Scholar 

  • Andrienko N, Andrienko G (2011) Spatial generalisation and aggregation of massive movement data. IEEE Trans Vis Comput Graph 17:205–219

    Article  Google Scholar 

  • Andrienko G, Andrienko N, Dykes J, Fabrikant SI, Wachowicz M (2008) Geovisualization of dynamics, movement and change: key issues and developing approaches in visualization research. SAGE Publications Sage UK, London

    Google Scholar 

  • Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) OPTICS: ordering points to identify the clustering structure. ACM Sigmod Rec 28(2):49–60

    Article  Google Scholar 

  • Berglund S, Karlström A (1999) Identifying local spatial association in flow data. J Geogr Syst 1(3):219–236

    Article  Google Scholar 

  • Black WR (1992) Network autocorrelation in transport network and flow systems. Geographical Analysis 24(3):207–222

    Article  Google Scholar 

  • Block HD, Marschak J (1959) Random orderings and stochastic theories of response (No. 66). Cowles Foundation for Research in Economics, Yale University.

    Google Scholar 

  • Blondel VD et al (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 10:1–12

    MATH  Google Scholar 

  • Boyandin I, Bertini E, Lalanne D (2010) Using flow maps to explore migrations over time. In: Geospatial visual analytics workshop in conjunction with the 13th AGILE international conference on geographic information science 2(3).

    Google Scholar 

  • Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30(1–7):107–117

    Article  Google Scholar 

  • Cao G, Wang S, Hwang M, Padmanabhan A, Zhang Z, Soltani K (2015) A scalable framework for spatiotemporal analysis of location-based social media data. Computers, Environment and Urban Systems 51:70–82

    Article  Google Scholar 

  • Chin WCB, Wen TH (2015) Geographically modified PageRank algorithms: identifying the spatial concentration of human movement in a geospatial network. PLoS One 10(10):e0139509

    Article  Google Scholar 

  • Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. Journal of Geographical Systems 10(4):317–344

    Article  Google Scholar 

  • Chun Y (2014) Analyzing space-time crime incidents using eigenvector spatial filtering: an application to vehicle burglary. Geographical Analysis 46(2):165–184

    Article  Google Scholar 

  • Chun Y, Griffith D (2011) Modeling network autocorrelation in space–time migration flow data: an eigenvector spatial filtering approach. Ann Assoc Am Geogr 101(3):523–536

    Article  Google Scholar 

  • Chun Y, Kim H, Kim C (2012) Modeling interregional commodity flows with incorporating network autocorrelation in spatial interaction models: an application of the US interstate commodity flows. Computers, Environment and Urban Systems 36(6):583–591

    Article  Google Scholar 

  • Cui W, Zhou H, Qu H, Wong PC, Li X (2008) Geometry-based edge clustering for graph visualization. IEEE Trans Vis Comput Graph 14(6):1277–1284

    Article  Google Scholar 

  • Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96(34):226–231

    Google Scholar 

  • Fang Z, Shaw S, Tu W, Li Q, Li Y (2012) Spatiotemporal analysis of critical transportation links based on time geographic concepts: a case study of critical bridges in Wuhan, China. J Transp Geogr 23:44–59

    Article  Google Scholar 

  • Farmer C, Oshan T (2017) Spatial interaction. The geographic information science & technology body of knowledge (4th quarter 2017 edition), John P. Wilson (ed.). https://www.ucgis.org/gis-t-body-of-knowledge

  • Fotheringham AS (1983) A new set of spatial-interaction models: the theory of competing destinations. Environ Plan A Econ Space 15(1):15–36

    Article  Google Scholar 

  • Gao S, Liu Y, Wang Y, Ma X (2013) Discovering spatial interaction communities from mobile phone data. Transactions in GIS 17(3):463–481

    Article  Google Scholar 

  • Gao Y, Ye C, Zhong X, Wu L, Liu Y (2019) Extracting spatial patterns of intercity tourist movements from online travel blogs. Sustainability 11(13):3526

    Article  Google Scholar 

  • Genolini C, Falissard B (2010) KmL: K-means for longitudinal data. Comput Stat 25(2):317–328

    Article  MathSciNet  MATH  Google Scholar 

  • Getis A, Ord J (1992) The analysis of spatial association by use of distance statistics. Geographical Analysis 24(3):189–206

    Article  Google Scholar 

  • Glennon JA (2005) Flow data model tool for ArcGIS 9.0. Department of Geography, University of California, Santa Barbara. Flow tool available at http://www.alanglennon.com/flowtools/

  • Gong Z, Tao R, Ma Q, Kan C (2018) Exploratory analysis of inter-city human activity interactions for shrinking cities in Northeast China with flowAMOEBA. Proceedings of the 26th GIScience research UK conference, Leicester, UK, 17–20 Apr 2018

    Google Scholar 

  • Griffith D (2007) Spatial structure and spatial interaction: 25 years later. Rev Reg Stud 37(1):28–38

    Google Scholar 

  • Griffith D (2009) Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 germany journey-to-work flows. Journal of Geographical Systems 11(2):117–140

    Article  Google Scholar 

  • Guo D (2009) Flow mapping and multivariate visualization of large spatial interaction data. IEEE Trans Vis Comput Graph 15(6):1041–1048

    Article  Google Scholar 

  • Guo D, Zhu X (2014) Origin-destination flow data smoothing and mapping. IEEE Trans Vis Comput Graph 20(12):2043–2052

    Article  Google Scholar 

  • Haynes KE, Fotheringham AS (1984) Gravity and spatial interaction models, vol 2. Sage, Beverly Hills

    Google Scholar 

  • Holten D, Van Wijk JJ (2009) Force-directed edge bundling for graph visualization. Comput Graph Forum 28:983–990

    Article  Google Scholar 

  • Lee JG, Han J, Whang KY (2007) Trajectory clustering: a partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD international conference on management of data. 593–604.

    Google Scholar 

  • LeSage JP, Pace RK (2008) Spatial econometric modeling of origin-destination flows. J Reg Sci 48(5):941–967

    Article  Google Scholar 

  • Liu L, Andris C, Ratti C (2010) Uncovering cabdrivers’ behavior patterns from their digital traces. Computers, Environment and Urban Systems 34(6):541–548

    Article  Google Scholar 

  • Liu Y, Sui Z, Kang C, Gao Y (2014) Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS One 9(1):e86026

    Article  Google Scholar 

  • Liu Y, Tong D, Liu X (2015) Measuring spatial autocorrelation of vectors. Geographical Analysis 47(3):300–319

    Article  Google Scholar 

  • Lu Y, Thill J-C (2003) Assessing the cluster correspondence between paired point locations. Geographical Analysis 35(4):290–309

    Article  Google Scholar 

  • Lu Y, Thill J-C (2008) Cross-scale analysis of cluster correspondence using different operational neighborhoods. Journal of Geographical Systems 10(3):241–261

    Article  Google Scholar 

  • Marble DF, Gou Z, Liu L, Saunders J (1997) Recent advances in the exploratory analysis of interregional flows in space and time. In: Kemp Z (ed) Innovations in GIS 4. Taylor & Francis, London, pp 75–88

    Google Scholar 

  • Murray A, Liu Y, Rey SJ, Anselin L (2011) Exploring movement object patterns. Ann Reg Sci 49(2):471–484

    Article  Google Scholar 

  • Nanni M, Pedreschi D (2006) Time-focused clustering of trajectories of moving objects. J Intell Inf Syst 27(3):267–289

    Article  Google Scholar 

  • Ord J, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis 27(4):286–306

    Article  Google Scholar 

  • Ossama O, Mokhtar H, El-Sharkawi M (2011) Clustering moving objects using segments slopes. Int J Database Manag Syst 3(1):35–48

    Article  Google Scholar 

  • Phan D, Xiao L, Yeh R, Hanrahan P (2005) Flow map layout. IEEE Symp Inf Vis:219–224

    Google Scholar 

  • Qu H, Zhou H, Wu Y (2006) Controllable and progressive edge clustering for large networks. Proc Symp Graph Draw:399–404. Springer, Berlin, Heidelberg

    Google Scholar 

  • Shekhar S, Lu CT, Zhang P (2003) A unified approach to detecting spatial outliers. GeoInformatica 7(2):139–166

    Article  Google Scholar 

  • Simini F, González MC, Maritan A, Barabási AL (2012) A universal model for mobility and migration patterns. Nature 484(7392):96

    Article  Google Scholar 

  • Tao R, Thill JC (2016a) Spatial cluster detection in spatial flow data. Geogr Anal 48(4):355–372

    Article  Google Scholar 

  • Tao R, Thill JC (2016b) A density-based spatial flow cluster detection method. In: The ninth international conference on geographic information science (GIScience2016) short paper proceedings. Montreal, Canada. pp 288–291

    Google Scholar 

  • Tao R, Thill JC (2019a) flowAMOEBA: identifying regions of anomalous spatial interactions. Geographical Analysis 51(1):111–130

    Article  Google Scholar 

  • Tao R, Thill JC (2019b) Flow cross K-function: a bivariate flow analytical method. Int J Geogr Inf Sci 33(10):2055–2071

    Google Scholar 

  • Tao R, Thill JC, Depken C, Kashiha M (2017) Flow HDBSCAN: a hierarchical and density-based spatial flow cluster analysis method. In: Proceedings of UrbanGIS’17:3rd ACM SIGSPATIAL workshop on smart cities and urban analytics. Redondo Beach

    Google Scholar 

  • Thill JC (2011) Is spatial really that special? A tale of spaces. In: Information fusion and geographic information systems. Springer, Berlin, Heidelberg, pp 3–12

    Chapter  Google Scholar 

  • Tobler WR (1987) Experiments in migration mapping by computer. Am Cartogr 14:155–163

    Article  Google Scholar 

  • Tobler WR (2004) Movement mapping. http://csiss.ncgia.ucsb.edu/clearinghouse/FlowMapper

  • Yan J, Thill J-C (2009) Visual data mining in spatial interaction analysis with self-organizing maps. Environ Plan B Plan Design 36(3):466–486

    Article  Google Scholar 

  • Yang G, Ma K, Yuan X, Li J, Lu Q (2019) Expectation-based 3D edge bundling. Multimed Tools Appl 78(24):35099–35118

    Google Scholar 

  • Zhu X, Guo D (2014) Mapping large spatial flow data with hierarchical clustering. Trans GIS 18(3):421–435

    Article  Google Scholar 

  • Zhu X, Guo D, Koylu C, Chen C (2019) Density-based multi-scale flow mapping and generalization. Comput Environ Urban Syst 77(2):101359

    Article  Google Scholar 

  • Zipf GK (1946) The P 1 P 2/D hypothesis: on the intercity movement of persons. Am Sociol Rev 11(6):677–686

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tao, R. (2021). Big Spatial Flow Data Analytics. In: Werner, M., Chiang, YY. (eds) Handbook of Big Geospatial Data. Springer, Cham. https://doi.org/10.1007/978-3-030-55462-0_7

Download citation

Publish with us

Policies and ethics