Skip to main content

Indoor 3D: Overview on Scanning and Reconstruction Methods

  • Chapter
  • First Online:
Handbook of Big Geospatial Data

Abstract

This chapter covers the essentials regarding indoor 3D data, from scanning to reconstruction. It is aimed for education and professionals. The order of presentation is background, history in measurement method development, sensors, sensor systems, positioning algorithms, reconstruction, and applications. The authors’ backgrounds are in indoor 3D, mobile laser scanning, indoor reconstruction, and robotics. In order to maintain a coherence in the text and provide some useful tools for the reader, we have selected to focus solely on the ICP version of simultaneous localization and mapping (SLAM). Regardless, this should give a solid base for the reader to understand other (e.g. probabilistic) indoor SLAM methods as well. Reconstruction algorithms (starting from room segmentation and opening detection) are discussed with the help of abundant figures. At the very end, we discuss future trends with a connection to the current applications and propose some exercise questions for students.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terms dead reckoning and pedestrian dead reckoning are used in the field of positioning and navigation.

  2. 2.

    Note that ready open source SLAM codes are also available, e.g. https://github.com/googlecartographer/ (Hess et al. 2016).

  3. 3.

    Typically, the origin is chosen to be at the start point of scanning, i.e. (x, y, z) = (0,  0,  0).

  4. 4.

    Navipedia of European Space Agency: https://gssc.esa.int/navipedia/

  5. 5.

    In reconstruction literature, voxel maps are also referred to as Manhattan world approximation.

  6. 6.

    Today the commercial RGB-D cameras have a range of only up to 10 m.

  7. 7.

    For example, https://www.solibri.com/how-it-works

References

  • Adan A, Huber D (2011) 3D reconstruction of interior wall surfaces under occlusion and clutter. In: 2011 international conference on 3D imaging, modeling, processing, visualization and transmission. IEEE, pp 275–281

    Google Scholar 

  • Arun KS, Huang TS, Blostein SD (1987) Least square fitting of two 3-d point sets. IEEE Trans Pattern Anal Mach Intell 9(5):698–700

    Article  Google Scholar 

  • Bassier M, Vergauwen M (2019) Clustering of wall geometry from unstructured point clouds using conditional random fields. Remote Sens 11(13):1586

    Article  Google Scholar 

  • Becker S, Peter M, Fritsch D, Philipp D, Baier P, Dibak C (2013) Combined grammar for the modeling of building interiors. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4:1–6

    Google Scholar 

  • Becker S, Peter M, Fritsch D (2015) Grammar-supported 3D indoor reconstruction from point clouds for “as-built” bim. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2:17–24

    Article  Google Scholar 

  • Benjemaa R, Schmitt F (1997) Fast global registration of 3D sampled surfaces using a multi-Z-buffer technique. In: Proceedings IEEE international conference on recent advances in 3D digital imaging and modeling (3DIM’97), Ottawa

    Google Scholar 

  • Benjemaas R, Schmitt F (1998) A solution for the registration of multiple 3D point sets using unit quaternions. In: Computer vision – ECCV’98, vol 2, pp 34–50

    Google Scholar 

  • Bergevin R, Soucy M, Gagnon H, Laurendeau D (1996) Towards a general multi-view registration technique. IEEE Trans Pattern Anal Mach Intell (PAMI) 18(5):540–547

    Article  Google Scholar 

  • Besl P, McKay N (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell (PAMI) 14(2):239–256

    Article  Google Scholar 

  • Blaser S, Cavegn S, Nebiker S (2018) Development of a portable high performance mobile mapping system using the robot operating system. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4(1):13–20

    Article  Google Scholar 

  • Bormann R, Jordan F, Li W, Hampp J, Hägele M (2016) Room segmentation: survey, implementation, and analysis. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1019–1026

    Google Scholar 

  • Borrmann D, Jörissen S, Nüchter A (2018) Radler-a radial laser scanning device

    Google Scholar 

  • Borrmann D, Elseberg J, Lingemann K, Nüchter A, Hertzberg J (2008a) Globally consistent 3D mapping with scan matching. J Robot Auton Syst (JRAS) 56(2):130–142. https://robotik.informatik.uni-wuerzburg.de/telematics/download/ras2007.pdf

    Article  Google Scholar 

  • Borrmann D, Elseberg J, Lingemann K, Nüchter A, Hertzberg J (2008b) The efficient extension of globally consistent scan matching to 6 DoF. In: Proceedings of the 4th international symposium on 3D data processing, visualization and transmission (3DPVT’08), Atlanta, pp 29–36. https://robotik.informatik.uni-wuerzburg.de/telematics/download/3dpvt2008.pdf

  • Bosse M, Zlot R, Flick P (2012) Zebedee: design of a spring-mounted 3-D range sensor with application to mobile mapping. IEEE Trans Robot 28(5):1104–1119

    Article  Google Scholar 

  • Boulch A, Houllier S, Marlet R, Tournaire O (2013) Semantizing complex 3D scenes using constrained attribute grammars. In: Proceedings of the eleventh eurographics/ACMSIGGRAPH symposium on geometry processing. Eurographics Association, pp 33–42

    Google Scholar 

  • Böhm J, Becker S (2007) Automatic marker-free registration of terrestrial laser scans using reflectance features. In: Proceedings of 8th conference on optical 3D measurment techniques, Zurich, pp 338–344

    Google Scholar 

  • Businesswire (2019) Global indoor 3D laser scanner market outlook, 2017–2026. https://www.businesswire.com/news/home/20191009005303/en/Global-Indoor-3D-Laser-Scanner-Market-Outlook

  • Chen J, Clarke KC (2017) Modeling standards and file formats for indoor mapping. In: GISTAM, pp 268–275

    Google Scholar 

  • Chen Y, Medioni G (1991) Object modelling by registration of multiple range images. In: Proceedings of the IEEE conference on robotics and automation (ICRA’91), Sacramento, pp 2724–2729

    Google Scholar 

  • Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput 10(3):145–155

    Article  Google Scholar 

  • Chomsky N (1959) On certain formal properties of grammars. Inf Control 2(2):137–167

    Article  MathSciNet  MATH  Google Scholar 

  • Concha A, Loianno G, Kumar V, Civera J (2016) Visual-inertial direct slam. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1331–1338

    Google Scholar 

  • Cunnington S, Stoddart A (1999) N-view point set registration: a comparison. In: Proceedings of the 10th British machine vision conference (BMVC’99), Nottingham. citeseer.nj.nec.com/319525.html

  • Díaz-Vilariño L, Lagüela S, Armesto J, Arias P (2014) Indoor daylight simulation performed on automatically generated as-built 3D models. Energy Build 68:54–62

    Article  Google Scholar 

  • Du H, Henry P, Ren X, Cheng M, Goldman DB, Seitz SM, Fox D (2011) Interactive 3D modeling of indoor environments with a consumer depth camera. In: Proceedings of the 13th international conference on ubiquitous computing. ACM, pp 75–84

    Google Scholar 

  • Elseberg J, Magnenat S, Siegwart R, Nüchter A (2012) Comparison on nearest-neigbour-search strategies and implementations for efficient shape registration. J Softw Eng Robot (JOSER) 3(1):2–12. https://robotik.informatik.uni-wuerzburg.de/telematics/download/joser2012.pdf

    Google Scholar 

  • Elseberg J, Borrmann D, Nüchter A (2013) One billion points in the cloud – an octree for efficient processing of 3D laser scans. ISPRS J Photogramm Remote Sens (JPRS) Special Issue Terr 3D Model 76:76–88. https://robotik.informatik.uni-wuerzburg.de/telematics/download/isprs2012.pdf

  • Elseicy A, Nikoohemat S, Peter M, Elberink S (2018) Space subdivision of indoor mobile laser scanning data based on the scanner trajectory. Remote Sens 10(11):1815

    Article  Google Scholar 

  • Eudes A, Marzat J, Sanfourche M, Moras J, Bertrand S (2018) Autonomous and safe inspection of an industrial warehouse by a multi-rotor mav. In: Field and service robotics. Springer, Cham, pp 221–235

    Chapter  Google Scholar 

  • Flikweert P, Peters R, Díaz-Vilarino L, Voûte R, Staats B (2019) Automatic extraction of a navigation graph intended for indoorgml from an indoor point cloud. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4(2/W5):271–278

    Google Scholar 

  • Friedman JH, Bentley JL, Finkel RA (1977) An algorithm for finding best matches in logarithmic expected time. ACM Trans Math Softw 3(3):209–226

    Article  MATH  Google Scholar 

  • Furukawa Y, Curless B, Seitz SM, Szeliski R (2009) Reconstructing building interiors from images. In: 2009 IEEE 12th international conference on computer vision, pp 80–87, iD: 1

    Google Scholar 

  • Grant WS, Voorhies RC, Itti L (2019) Efficient velodyne slam with point and plane features. Auton Robots 43(5):1207–1224

    Article  Google Scholar 

  • Greenspan M, Yurick M (2003) Approximate K-D tree search for efficient ICP. In: Proceedings of the 4th IEEE international conference on recent advances in 3D digital imaging and modeling (3DIM’03), Banff, pp 442–448

    Google Scholar 

  • Grisetti G, Kummerle R, Stachniss C, Burgard W (2010) A tutorial on graph-based slam. IEEE Intell Transp Syst Mag 2(4):31–43

    Article  Google Scholar 

  • Hess W, Kohler D, Rapp H, Andor D (2016) Real-time loop closure in 2D lidar slam. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1271–1278

    Google Scholar 

  • Horn BKP (1987) Closed–form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642

    Article  Google Scholar 

  • Horn BKP, Hilden HM, Negahdaripour S (1988) Closed–form solution of absolute orientation using orthonormal matrices. J Opt Soc Am A 5(7):1127–1135

    Article  MathSciNet  Google Scholar 

  • Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W (2013) Octomap: an efficient probabilistic 3D mapping framework based on octrees. Auton Robots 34(3):189–206

    Article  Google Scholar 

  • Ikehata S, Yang H, Furukawa Y (2015) Structured indoor modeling. In: Proceedings of the IEEE international conference on computer vision, pp 1323–1331

    Google Scholar 

  • Kaijaluoto R, Kukko A, Hyyppä J (2015) Precise indoor localization for mobile laser scanner. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci XL-4/W5:1–6. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-4-W5/1/2015/

    Google Scholar 

  • Karam S, Vosselman G, Peter M, Hosseinyalamdary S, Lehtola V (2019) Design, calibration, and evaluation of a backpack indoor mobile mapping system. Remote Sens 11(8):905

    Article  Google Scholar 

  • Kaul L, Zlot R, Bosse M (2016) Continuous-time three-dimensional mapping for micro aerial vehicles with a passively actuated rotating laser scanner. J Field Robot 33(1):103–132

    Article  Google Scholar 

  • Khoshelham K, Díaz-Vilariño L (2014) 3D modelling of interior spaces: learning the language of indoor architecture. Int Arch Photogramm Remote Sens Spat Inf Sci 40(5):321

    Article  Google Scholar 

  • Khoshelham K, Vilariño LD, Peter M, Kang Z, Acharya D (2017) The ISPRS benchmark on indoor modelling. Int Arch Photogramm Remote Sens Spat Inf Sci 42:367–372

    Article  Google Scholar 

  • Krishnan S, Lee PY, Moore JB, Venkatasubramanian S (2000) Global registration of multiple 3D point sets via optimization on a manifold. In: Eurographics symposium on geometry processing

    Google Scholar 

  • Lagüela S, Díaz-Vilariño L, Martínez J, Armesto J (2013) Automatic thermographic and rgb texture of as-built bim for energy rehabilitation purposes. Autom Constr 31:230–240

    Article  Google Scholar 

  • Lauterbach H, Borrmann D, Heß R, Eck D, Schilling K, Nüchter A (2015) Evaluation of a backpack-mounted 3D mobile scanning system. Remote Sens 7(10):13753–13781

    Article  Google Scholar 

  • Lehtola VV, Kurkela M, Hyyppä H (2014) Automated image-based reconstruction of building interiors–a case study. Photogramm J Finl 24(1):1–13

    Article  Google Scholar 

  • Lehtola VV, Virtanen J-P, Kukko A, Kaartinen H, Hyyppa H (2015) Localization of mobile laser scanner using classical mechanics. ISPRS J Photogramm Remote Sens 99(0):25–29. http://www.sciencedirect.com/science/article/pii/S0924271614002585

    Article  Google Scholar 

  • Lehtola VV, Virtanen J-P, Vaaja MT, Hyyppä H, Nüchter A (2016) Localization of a mobile laser scanner via dimensional reduction. ISPRS J Photogramm Remote Sens 121:48–59

    Article  Google Scholar 

  • Lehtola V, Kaartinen H, Nüchter A, Kaijaluoto R, Kukko A, Litkey P, Honkavaara E, Rosnell T, Vaaja M, Virtanen J-P et al (2017) Comparison of the selected state-of-the-art 3D indoor scanning and point cloud generation methods. Remote Sens 9(8):796

    Article  Google Scholar 

  • Lehtola V, Hyyti H, Keränen P, Kostamovaara J (2019) Single photon lidar in mobile laser scanning: the sampling rate problem and initial solutions via spatial correlations. Int Arch Photogramm Remote Sens Spat Inf Sci 42:91–97

    Article  Google Scholar 

  • Liu T, Carlberg M, Chen G, Chen J, Kua J, Zakhor A (2010) Indoor localization and visualization using a human-operated backpack system. In: 2010 international conference on indoor positioning and indoor navigation. IEEE, pp 1–10

    Google Scholar 

  • Liu C, Wu J, Furukawa Y (2018) Floornet: a unified framework for floorplan reconstruction from 3D scans. In: Proceedings of the European conference on computer vision (ECCV), pp 201–217

    Google Scholar 

  • Lorusso A, Eggert D, Fisher R (1995) A comparison of four algorithms for estimating 3-D rigid transformations. In: Proceedings of the 4th British machine vision conference (BMVC’95), Birmingham, pp 237–246. citeseer.nj.nec.com/lorusso95comparison.html

  • Lu F, Milios E (1997) Globally consistent range scan alignment for environment mapping. Auton Robots 4:333–349

    Article  Google Scholar 

  • Mitra NJ, Gelfand N, Pottmann H, Guibas L (2004) Registration of point cloud data from a geometric optimization perspective. In: Scopigno R, Zorin D (eds) Eurographics symposium on geometry processing, pp 23–32

    Google Scholar 

  • Moosmann F, Stiller C (2011) Velodyne slam. In: 2011 IEEE intelligent vehicles symposium (IV). IEEE, pp 393–398

    Google Scholar 

  • Mozos ÓM (2010) Semantic labeling of places with mobile robots, vol 61. Springer, Berlin/Heidelberg

    Google Scholar 

  • Müller P, Wonka P, Haegler S, Ulmer A, Van Gool L (2006) Procedural modeling of buildings. In: ACM transactions on graphics (Tog), vol 25. ACM, pp 614–623

    Google Scholar 

  • Mur-Artal R, Tardós JD (2017) Orb-slam2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans Robot 33(5):1255–1262

    Article  Google Scholar 

  • Mura C, Mattausch O, Villanueva AJ, Gobbetti E, Pajarola R (2014) Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts. Comput Graph 44:20–32

    Article  Google Scholar 

  • Mura C, Mattausch O, Pajarola R (2016) Piecewise-planar reconstruction of multi-room interiors with arbitrary wall arrangements. In: Computer graphics forum, vol 35. Wiley Online Library, pp 179–188

    Google Scholar 

  • Murali S, Speciale P, Oswald MR, Pollefeys M (2017) Indoor scan2bim: building information models of house interiors. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 6126–6133

    Google Scholar 

  • Musialski P, Wonka P, Aliaga DG, Wimmer M, van Gool L, Purgathofer W (2013) A survey of urban reconstruction. Comput Graph Forum 32(6):146–177

    Article  Google Scholar 

  • NavVis (2016) Digitizing indoors – NavVis. http://www.navvis.com. Accessed: 20 Oct 2016

  • Nikoohemat S, Peter M, Elberink SO, Vosselman G (2017) Exploiting indoor mobile laser scanner trajectories for semantic interpretation of point clouds. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4:355–362

    Article  Google Scholar 

  • Nikoohemat S, Peter M, Oude Elberink S, Vosselman G (2018) Semantic interpretation of mobile laser scanner point clouds in indoor scenes using trajectories. Remote Sens 10(11):1754

    Article  Google Scholar 

  • Nikoohemat S, Diakité A, Zlatanova S, Vosselman G (2019) Indoor 3D modeling and flexible space subdivision from point clouds. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4:285–292

    Article  Google Scholar 

  • Nüchter A, Lingemann K, Hertzberg J (2007) Cached k-D tree search for ICP algorithms. In: Proceedings of the 6th IEEE international conference on recent advances in 3D digital imaging and modeling (3DIM’07), Montreal, pp 419–426. https://robotik.informatik.uni-wuerzburg.de/telematics/download/3dim2007.pdf

  • Nützi G, Weiss S, Scaramuzza D, Siegwart R (2011) Fusion of IMU and vision for absolute scale estimation in monocular slam. J Intell Robot Syst 61(1–4):287–299

    Article  Google Scholar 

  • Ochmann S, Vock R, Klein R (2019) Automatic reconstruction of fully volumetric 3D building models from oriented point clouds. ISPRS J Photogramm Remote Sens 151:251–262

    Article  Google Scholar 

  • Oesau S, Lafarge F, Alliez P (2014) Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut. ISPRS J Photogramm Remote Sens 90:68–82

    Article  Google Scholar 

  • Pulli K (1999) Multiview registration for large data sets. In: Proceedings of the 2nd international conference on 3D digital imaging and modeling (3DIM’99), Ottawa, pp 160–168

    Google Scholar 

  • Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In: Proceedings of the third international conference on 3D digital imaging and modellling (3DIM’01), Quebec City, pp 145–152

    Google Scholar 

  • Schneider S, Himmelsbach M, Luettel T, Wuensche H-J (2010) Fusing vision and lidar-synchronization, correction and occlusion reasoning. In: 2010 IEEE intelligent vehicles symposium. IEEE, pp 388–393

    Google Scholar 

  • Staats B, Diakité A, Voûte R, Zlatanova S (2019) Detection of doors in a voxel model, derived from a point cloud and its scanner trajectory, to improve the segmentation of the walkable space. Int J Urban Sci 23(3):369–390

    Article  Google Scholar 

  • Stiny G, Gips J (1971) Shape grammars and the generative specification of painting and sculpture. In: IFIP congress (2), vol 2

    Google Scholar 

  • Stoddart A, Hilton A (1996) Registration of multiple point sets. In: Proceedings of the 13th IAPR international conference on pattern recognition, Vienna, pp 40–44

    Google Scholar 

  • Taketomi T, Uchiyama H, Ikeda S (2017) Visual slam algorithms: a survey from 2010 to 2016. IPSJ Trans Comput Vis Appl 9(1):16

    Article  Google Scholar 

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. The MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Tran H, Khoshelham K, Kealy A, Díaz-Vilariño L (2018) Shape grammar approach to 3D modeling of indoor environments using point clouds. J Comput Civil Eng 33(1):04018055

    Article  Google Scholar 

  • Tran H, Khoshelham K, Kealy A (2019) Geometric comparison and quality evaluation of 3D models of indoor environments. ISPRS J Photogramm Remote Sens 149:29–39

    Article  Google Scholar 

  • Tucci G, Visintini D, Bonora V, Parisi E (2018) Examination of indoor mobile mapping systems in a diversified internal/external test field. Appl Sci 8(3):401

    Article  Google Scholar 

  • Turner E, Cheng P, Zakhor A (2014) Fast, automated, scalable generation of textured 3D models of indoor environments. IEEE J Sel Top Signal Process 9(3):409–421

    Article  Google Scholar 

  • Väänänen P, Lehtola V (2019) Inpainting occlusion holes in 3D built environment point clouds. Int Arch Photogramm Remote Sens Spat Inf Sci 42:393–398

    Article  Google Scholar 

  • Velas M, Spanel M, Hradis M, Herout A (2018) Cnn for IMU assisted odometry estimation using velodyne lidar. In: 2018 IEEE international conference on autonomous robot systems and competitions (ICARSC). IEEE, pp 71–77

    Google Scholar 

  • Walker MW, Shao L, Volz RA (1991) Estimating 3-D location parameters using dual number quaternions. CVGIP Image Underst 54:358–367

    Article  MATH  Google Scholar 

  • Williams J, Bennamoun M (1999) Multiple view 3D registration using statistical error models. In: Vision modeling and visualization

    Google Scholar 

  • Wonka P, Wimmer M, Sillion F, Ribarsky W (2003) Instant architecture, SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers July 2003 pp 669–677 vol 22. ACM Headquarters. https://doi.org/10.1145/1201775.882324

  • Xiao J, Furukawa Y (2014) Reconstructing the worlds museums. Int J Comput Vis 110(3):243–258

    Article  Google Scholar 

  • Xiong X, Adan A, Akinci B, Huber D (2013) Automatic creation of semantically rich 3D building models from laser scanner data. Autom Constr 31:325–337

    Article  Google Scholar 

  • Zhang Z (1992) Iterative point matching for registration of free–form curves. Technical Report RR-1658, INRIA–Sophia Antipolis, Valbonne Cedex. citeseer.nj.nec.com/zhang92iterative.html

  • Zhang J, Singh S (2014) Loam: lidar odometry and mapping in real-time. In: Robotics: science and systems conference (RSS), vol 2, p 9

    Google Scholar 

  • Zlatanova S, Van Oosterom P, Lee J, Li KJ, Lemmen C (2016) Ladm and indoorgml for support of indoor space identification. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4:257–263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville V. Lehtola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lehtola, V.V., Nikoohemat, S., Nüchter, A. (2021). Indoor 3D: Overview on Scanning and Reconstruction Methods. In: Werner, M., Chiang, YY. (eds) Handbook of Big Geospatial Data. Springer, Cham. https://doi.org/10.1007/978-3-030-55462-0_3

Download citation

Publish with us

Policies and ethics