Skip to main content

Advertisement

Log in

Localization of hematopoietic cells in the bullfrog (Lithobates catesbeianus)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Amphibians represent the first phylogenetic group to possess hematopoietic bone marrow. However, adult amphibian hematopoiesis has only been described in a few species and with conflicting data. Bone marrow, kidney, spleen, liver, gut, stomach, lung, tegument, and heart were therefore collected from adult Lithobates catesbeianus and investigated by light microscopy and immunohistochemical methods under confocal laser microscopy. Our study demonstrated active hematopoiesis in the bone marrow of vertebrae, femur, and fingers and in the kidney, but no hematopoietic activity inside other organs including the spleen and liver. Blood cells were identified as a heterogeneous cell population constituted by heterophils, basophils, eosinophils, monocytes, erythrocytic cells, lymphocytes, and their precursors. Cellular islets of the thrombocytic lineage occurred near sinusoids of the bone marrow. Antibodies against CD34, CD117, stem cell antigen, erythropoietin receptor, and the receptor for granulocyte colony-stimulating factor identified some cell populations, and some circulating immature cells were seen in the bloodstream. Thus, on the basis of these phylogenetic features, we propose that L. catesbeianus can be used as an important model for hematopoietic studies, since this anuran exhibits hematopoiesis characteristics both of lower vertebrates (renal hematopoiesis) and of higher vertebrates (bone marrow hematopoiesis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Almeida PG, Felsenburgh FA, Brito-Gitirana L de (2007) Morphological re-evaluation of the parotoid glands of Bufo ictericus (Amphibia, Anura, Bufonidae). Contrib Zool 76:145–152

    Google Scholar 

  • Azevedo RA, Carvalho HF, Brito-Gitirana L de (2007) Hyaluronan localization in epidermal and dermal extracellular matrix of the Brazilian toad integument using the FITC-labeled hyaluronan probe. Micron (Oxford) 38:607–661

    CAS  Google Scholar 

  • Baumhueter S, Dybdal N, Kyle C, Lasky LA (1994) Global expression of murine CD34, a sialomucin-like endothelial ligand for L-selectin. Blood 84:2554–2565

    PubMed  CAS  Google Scholar 

  • Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    Article  PubMed  CAS  Google Scholar 

  • Blair CH, Dong SS, Julian BA (1999) Expression of stem cell factor by osteoblasts in normal and hyperparathyroid bone: relation to ectopic mast cell differentiation. Virchows Arch 435:50–57

    Article  PubMed  CAS  Google Scholar 

  • Bogomoletz W (1980) Advantages of the Sirius red staining method for amyloid and eosinophils. Arch Anat Cytol Pathol 28:252–253

    PubMed  CAS  Google Scholar 

  • Brandt J, Briddell RA, Srour EF, Leemhuis TB, Hoffman R (1992) Role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood 79:634–641

    PubMed  CAS  Google Scholar 

  • Broudy VC, Morgan DA, Lin N, Zsebo KM, Jacobsen FW, Papayannopoulou T (1993) Stem cell factor influences the proliferation and erythroid differentiation of the MB-02 human erythroleukemia cell line by binding to a high-affinity c-kit receptor. Blood 82:436–444

    PubMed  CAS  Google Scholar 

  • Campbell FR (1970) Ultrastructure of the bone marrow of the frog. Am J Anat 129:329–356

    Article  PubMed  CAS  Google Scholar 

  • Carson FL, Martin JH, Lynn JA (1973) Formalin fixation for electron microscopy: a re-evaluation. Am J Clin Pathol 59:365–373

    PubMed  CAS  Google Scholar 

  • Cianciarullo AM, Beçak W, Soares MJ (1999) Immunocytochemical mapping of the hemoglobin biosynthesis site in amphibian erythroid cells. Tissue Cell 31:342–348

    Article  PubMed  CAS  Google Scholar 

  • Cianciarullo AM, Bertho AL, Meirelles MD (2000) Mitochondrial kinetics during amphibian erythropoiesis related to haeme synthesis. Cell Biol Int 24:183–192

    Article  PubMed  CAS  Google Scholar 

  • Cumano A, Godin I (2007) Ontogeny of the hematopoietic system. Annu Rev Immunol 25:745–785

    Article  PubMed  CAS  Google Scholar 

  • Curtis SK, Cowden RR, Nagel JW (1979) Ultrastructural and histochemical features of the thymus glands of the adult lungless salamander, Plethodon glutinosus (Caudata: Plethodontidae). J Morphol 160:241–274

    Article  PubMed  CAS  Google Scholar 

  • D'Andrea AD, Zon LI (1990) Erythropoietin receptor. Subunit structure and activation. J Clin Invest 86:681–687

    Article  PubMed  Google Scholar 

  • Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808

    PubMed  CAS  Google Scholar 

  • Duellmann WR, Trueb L (1994) Biology of amphibians. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Frank G (1989) Granulopoiesis in tadpoles of Rana esculenta: ultrastructural observations on the developing granulocytes and on the development of eosinophil granules. J Anat 163:97–105

    PubMed  CAS  Google Scholar 

  • Gomori G (1936) Microchemical demonstration of iron. Am J Pathol 12:655–659

    CAS  Google Scholar 

  • Gordon MY (1993) Human haemopoietic stem cell assays. Blood Rev 7:190–197

    Article  PubMed  CAS  Google Scholar 

  • Götze KS, Schiemann M, Marz S, Jacobs VR, Debus G, Peschel C, Oostendorp RA (2007) CD133-enriched CD34 (CD33/CD38/CD71) cord blood cells acquire CD34 prior to cell division and hematopoietic activity is exclusively associated with CD34 expression. Exp Hematol 35:1408–1414

    Article  PubMed  Google Scholar 

  • Hadji-Azimi I, Coosemans V, Canicatti C (1987) Atlas of adult Xenopus laevis laevis hematology. Dev Comp Immunol 11:807–874

    Article  PubMed  CAS  Google Scholar 

  • Heasman J (2006) Patterning the early Xenopus embryo development. Development 133:1205–1217

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Cho S, Spangrude GJ (2007) Hematopoietic stem cells: generation and self-renewal. Cell Death Differ 14:1851–1859

    Article  PubMed  CAS  Google Scholar 

  • Jelkmann W (2007) Erythropoietin after a century of research: younger than ever. Eur J Hematol 78:183–205

    Article  CAS  Google Scholar 

  • Jordan HE (1919) The histology of the blood and the red bone-marrow of the leopard frog, Rana pipiens. Am J Anat 25:437–480

    Article  Google Scholar 

  • Jordan HE, Speidel CC (1923) Studies on lymphocytes. I. Effect of splenectomy, experimental hemorrhage and a hemolytic toxin in the frog. Am J Anat 32:155–187

    Article  Google Scholar 

  • Kao KR, Bernstein A (1995) Expression of Xkl-1, a Xenopus gene related to mammalian c-kit, in dorsal embryonic tissue. Mech Dev 50:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL (2002) Histology and cell biology: an introduction to pathology. Mosby, St. Louis

    Google Scholar 

  • Krause DS, Fackler MJ, Civin CI, May WS (1996) CD34: structure, biology and clinical utility. Blood 87:1–13

    PubMed  CAS  Google Scholar 

  • Lennert K (1978) Malignant lymphomas other than Hodgkin’s disease: histology, cytology, ultrastructure, immunology. Springer, Berlin

    Google Scholar 

  • Lillie RD, Fullmer HM (1976) Histopathological technic and practical histochemistry. McGraw-Hill, New York

    Google Scholar 

  • Liu F, Poursine-Laurent J, Link DC (2000) Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 95:3025–3031, 15

    PubMed  CAS  Google Scholar 

  • McManus JFA (1946) Histological demonstration of mucin after periodic acid. Nature 158:202

    Article  Google Scholar 

  • Maniatis GM, Ingram VM (1971) Erythropoiesis during amphibian metamorphosis. I. Site of maturation of erythrocytes in Rana catesbeiana. J Cell Biol 49:372–379

    Article  CAS  Google Scholar 

  • Mayer P (1903) Notiz über Hämateïn und Hämalaun. Z Wiss Mikrosk Mikrosk Tech 20:409

    Google Scholar 

  • Meseguer J, Lozano MT, Agulleiro B (1985) Ultrastructure of the renal granulopoietic tissue of the Rana ridibunda tadpole. J Submicrosc Cytol 17:391–401

    PubMed  CAS  Google Scholar 

  • Nicola NA, Johnson GR (1982) The production of committed hemopoietic colony-forming cells from multipotential precursors in vitro. Blood 60:1019–1029

    PubMed  CAS  Google Scholar 

  • NIH (2001) Stem cells: scientific progress and future research directions. Department of Health and Human Services; http://stemcells.nih.gov/info/scireport/2001report (accessed 18 August 2008)

  • Ogawa M, Porter PN, Nakahata T (1983) Renewal and commitment to differentiation of hemopoietic stem cells: an interpretive review. Blood 61:823–829

    PubMed  CAS  Google Scholar 

  • Ong RC, Maéno M, Kung HF (1993) Murine stem cell factor stimulates erythropoietic differentiation of ventral mesoderm in Xenopus gastrula embryo. Exp Cell Res 205:326–330

    Article  PubMed  CAS  Google Scholar 

  • Raucci F, Di Fiore MM (2007) The c-kit receptor protein in the testis of green frog Rana esculenta: seasonal changes in relationship to testosterone titres and spermatogonial proliferation. Reproduction 133:51–60

    Article  PubMed  CAS  Google Scholar 

  • Raucci F, Di Fiore MM, Pinelli C, D'Aniello B, Luongo L, Polese G, Rastogi RK (2006) Proliferative activity in the frog brain: a PCNA-immunohistochemistry analysis. J Chem Neuroanat 32:127–142

    Article  PubMed  CAS  Google Scholar 

  • Rodak BF (1995) Diagnostic hematology. Saunders, Philadelphia

    Google Scholar 

  • Shoemaker VH, Nagy KA (1977) Osmoregulation in amphibians and reptiles. Annu Rev Physiol 39:449–471

    Article  PubMed  CAS  Google Scholar 

  • Surbis AY (1978) Ultrastructural study of granulocytes of Bufo marinus. Florida Scientist 41:45–52

    Google Scholar 

  • Tanaka Y (1976) Architecture of the marrow vasculature in three amphibian species and its significance in hematopoietic development. Am J Anat 145:485–497

    Article  PubMed  CAS  Google Scholar 

  • Thomas N, Maclean N (1974) The blood as an erythropoietic organ in anaemic Xenopus. Experimentia 30:1083–1085, 15

    Article  CAS  Google Scholar 

  • Till JE, McCulloch EA, Siminovitch L (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony forming cells. Proc Nati Acad Sci USA 51:29–36

    Article  CAS  Google Scholar 

  • Uchiyama M, Kamijyo M, Katayama M, Matsuda K, Yoshizawa H (2001) Correlation of the habitats and the kidney structures in anuran amphibians. Zool Sci 18(Suppl):113

    Google Scholar 

  • Wehrend A, Hetzel U, Huchzermeyer S, Klein C, Bostedt H (2004) Sirius red is able to selectively stain eosinophil granulocytes in bovine, ovine and equine cervical tissue. Anat Histol Embryol 33:180–182

    Article  PubMed  CAS  Google Scholar 

  • Yergeau DA, Schmerer M, Kuliyev E, Evans T, Mead PE (2006) Cloning and expression pattern of the Xenopus erythropoietin receptor. Gene Expr Patterns 6:420–425

    Article  PubMed  CAS  Google Scholar 

  • Zapata AG, Torroba M, Vicente A, Varas A, Sacedón R, Jiménez E (1995) The relevance of cell microenvironments for the appearance of lympho-haemopoietic tissues in primitive vertebrates. Histol Histopathol 10:761–778

    PubMed  CAS  Google Scholar 

  • Zucker-Franklin D, Greaves MF, Grossi CE, Marmont AM (1988) Atlas of blood cells: function and pathology, 2nd edn. Ermes, Milan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Paulo de Abreu Manso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Abreu Manso, P.P., de Brito-Gitirana, L. & Pelajo-Machado, M. Localization of hematopoietic cells in the bullfrog (Lithobates catesbeianus). Cell Tissue Res 337, 301–312 (2009). https://doi.org/10.1007/s00441-009-0803-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0803-0

Keywords

Navigation