Skip to main content

Embryonic and Pluripotent Stem Cells

  • Chapter
  • First Online:
Regenerative Medicine and Stem Cell Biology

Abstract

This chapter will focus on pluripotency as a key feature in determining the differentiation potential of cells and the importance of embryonic and pluripotent stem cells in research together with their promising applications in regenerative medicine. It also includes a brief description of the major findings on embryonic stem cells’ derivation, characterization, and differentiation. The differences between naïve and primed pluripotency will be highlighted, and the in vitro growth conditions contributing to these differences. This chapter will also cover major findings in nuclear reprogramming and the recent developments in induced pluripotent stem cell technology. Finally, we will conclude with the limitations of embryonic stem cells in clinical applications and areas for future research.

Shaimaa Shouman and Alaa E. Hussein contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosler ES, Fisk GJ, Ares X, Irving J, Miura T, Rao MS, et al. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn. 2004;229(2):259–74.

    Article  CAS  PubMed  Google Scholar 

  2. De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, et al. Hallmarks of pluripotency. Nature. 2015;525(7570):469–78.

    Article  PubMed  CAS  Google Scholar 

  3. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell. 2017;169(2):243–57. e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weinberger L, Ayyash M, Novershtern N, Hanna JH. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol. 2016;17(3):155–69.

    Article  CAS  PubMed  Google Scholar 

  5. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol. 2015;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–91.

    Article  CAS  PubMed  Google Scholar 

  7. Heurtier V, Owens N, Gonzalez I, Mueller F, Proux C, Mornico D, et al. The molecular logic of Nanog-induced self-renewal in mouse embryonic stem cells. Nat Commun. 2019;10(1):1109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fong H, Hohenstein KA, Donovan PJ. Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells. 2008;26(8):1931–8.

    Article  CAS  PubMed  Google Scholar 

  9. Xie X, Hiona A, Lee AS, Cao F, Huang M, Li Z, et al. Effects of long-term culture on human embryonic stem cell aging. Stem Cells Dev. 2011;20(1):127–38.

    Article  CAS  PubMed  Google Scholar 

  10. Andrews PW, Banting G, Damjanov I, Arnaud D, Avner P. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. Hybridoma. 1984;3(4):347–61.

    Article  CAS  PubMed  Google Scholar 

  11. Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, Knowles BB, et al. Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 1983;2(12):2355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. MacGregor GR, Zambrowicz BP, Soriano P. Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development. 1995;121(5):1487–96.

    CAS  PubMed  Google Scholar 

  13. Shevinsky LH, Knowles BB, Damjanov I, Solter D. Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell. 1982;30(3):697–705.

    Article  CAS  PubMed  Google Scholar 

  14. Stefkova K, Prochazkova J, Pachernik J. Alkaline phosphatase in stem cells. Stem Cells Int. 2015;2015:628368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  16. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309(5965):255–6.

    Article  CAS  PubMed  Google Scholar 

  18. Wilmut I, Sullivan G, Chambers I. The evolving biology of cell reprogramming. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366(1575):2183–97.

    Article  CAS  Google Scholar 

  19. Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 1962;10:622–40.

    CAS  PubMed  Google Scholar 

  20. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385(6619):810–3.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson WH, Loskutoff NM, Plante Y, Betteridge KJ. Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet Rec. 1995;137(1):15–6.

    Article  CAS  PubMed  Google Scholar 

  22. Hall VJ, Stojkovic P, Stojkovic M. Using therapeutic cloning to fight human disease: a conundrum or reality? Stem Cells. 2006;24(7):1628–37.

    Article  PubMed  Google Scholar 

  23. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science. 1997;278(5346):2130–3.

    Article  CAS  PubMed  Google Scholar 

  24. Lisker R. Ethical and legal issues in therapeutic cloning and the study of stem cells. Arch Med Res. 2003;34(6):607–11.

    Article  PubMed  Google Scholar 

  25. Ayala FJ. Cloning humans? Biological, ethical, and social considerations. Proc Natl Acad Sci U S A. 2015;112(29):8879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  CAS  PubMed  Google Scholar 

  27. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998;12(13):2048–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol. 2001;11(19):1553–8.

    Article  CAS  PubMed  Google Scholar 

  29. Davis RL, Cheng PF, Lassar AB, Weintraub H. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell. 1990;60(5):733–46.

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  31. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  32. Najm FJ, Chenoweth JG, Anderson PD, Nadeau JH, Redline RW, McKay RD, et al. Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell. 2011;8(3):318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell. 2009;4(6):487–92.

    Article  CAS  PubMed  Google Scholar 

  34. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448(7150):196–9.

    Article  CAS  PubMed  Google Scholar 

  35. Huang Y, Osorno R, Tsakiridis A, Wilson V. In Vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep. 2012;2(6):1571–8.

    Article  CAS  PubMed  Google Scholar 

  36. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504(7479):282–6.

    Article  CAS  PubMed  Google Scholar 

  37. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B. Chuva de Sousa lopes SM, et al. derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448(7150):191–5.

    Article  CAS  PubMed  Google Scholar 

  38. Choi HW, Joo JY, Hong YJ, Kim JS, Song H, Lee JW, et al. Distinct enhancer activity of Oct4 in naive and primed mouse Pluripotency. Stem Cell Reports. 2016;7(5):911–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mascetti VL, Pedersen RA. Contributions of mammalian chimeras to pluripotent stem cell research. Cell Stem Cell. 2016;19(2):163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961;190:372–3.

    Article  CAS  PubMed  Google Scholar 

  41. Sousa EJ, Stuart HT, Bates LE, Ghorbani M, Nichols J, Dietmann S, et al. Exit from naive Pluripotency induces a transient X chromosome inactivation-like state in males. Cell Stem Cell. 2018;22(6):919–28. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A. 2010;107(20):9222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell. 2014;158(6):1254–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duggal G, Warrier S, Ghimire S, Broekaert D, Van der Jeught M, Lierman S, et al. Alternative routes to induce naive Pluripotency in human embryonic stem cells. Stem Cells. 2015;33(9):2686–98.

    Article  CAS  PubMed  Google Scholar 

  45. Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W, Jonlin EC, et al. Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111(12):4484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo G, von Meyenn F, Rostovskaya M, Clarke J, Dietmann S, Baker D, et al. Epigenetic resetting of human pluripotency. Development. 2017;144(15):2748–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chiquoine AD. The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat Rec. 1954;118(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  48. Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y, et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development. 2007;134(14):2627–38.

    Article  CAS  PubMed  Google Scholar 

  49. Tam PP, Snow MH. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol. 1981;64:133–47.

    CAS  PubMed  Google Scholar 

  50. Sato M, Kimura T, Kurokawa K, Fujita Y, Abe K, Masuhara M, et al. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech Dev. 2002;113(1):91–4.

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka SS, Matsui Y. Developmentally regulated expression of mil-1 and mil-2, mouse interferon-induced transmembrane protein like genes, during formation and differentiation of primordial germ cells. Gene Expr Patterns. 2002;2(3–4):297–303.

    Article  CAS  PubMed  Google Scholar 

  52. Durcova-Hills G, Tang F, Doody G, Tooze R, Surani MA. Reprogramming primordial germ cells into pluripotent stem cells. PLoS One. 2008;3(10):e3531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell. 1992;70(5):841–7.

    Article  CAS  PubMed  Google Scholar 

  54. Labosky PA, Barlow DP, Hogan BL. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development. 1994;120(11):3197–204.

    CAS  PubMed  Google Scholar 

  55. Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T, Grabole N, et al. Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol. 2013;20(3):311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang J, Ryan DJ, Wang W, Tsang JC, Lan G, Masaki H, et al. Establishment of mouse expanded potential stem cells. Nature. 2017;550(7676):393–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mehta RH. Sourcing human embryos for embryonic stem cell lines: problems & perspectives. Indian J Med Res. 2014;140(Suppl):S106–11.

    PubMed  PubMed Central  Google Scholar 

  58. de Wert G, Mummery C. Human embryonic stem cells: research, ethics and policy. Hum Reprod. 2003;18(4):672–82.

    Article  PubMed  Google Scholar 

  59. Löser P, Schirm J, Guhr A, Wobus AM, Kurtz A. Human embryonic stem cell lines and their use in international research. Stem Cells. 2010;28(2):240–6.

    PubMed  PubMed Central  Google Scholar 

  60. Ström S, Inzunza J, Grinnemo KH, Holmberg K, Matilainen E, Strömberg AM, et al. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod. 2007;22(12):3051–8.

    Article  PubMed  Google Scholar 

  61. Desai N, Rambhia P, Gishto A. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reprod Biol Endocrinol. 2015;13(1):1–15.

    Article  CAS  Google Scholar 

  62. Solter D, Knowles BB. Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A. 1975;72(12):5099–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tanaka N, Takeuchi T, Neri QV, Sills ES, Palermo GD. Laser-assisted blastocyst dissection and subsequent cultivation of embryonic stem cells in a serum/cell free culture system: applications and preliminary results in a murine model. J Transl Med. 2006;4:1–16.

    Article  CAS  Google Scholar 

  64. Turetsky T, Aizenman E, Gil Y, Weinberg N, Shufaro Y, Revel A, et al. Laser-assisted derivation of human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis. Hum Reprod. 2008;23(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  65. Chen AE, Melton DA. Derivation of human embryonic stem cells by immunosurgery. J Vis Exp. 2007;10:1–4.

    Article  CAS  Google Scholar 

  66. Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol. 2002;20(9):933–6.

    Article  CAS  PubMed  Google Scholar 

  67. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19(10):971–4.

    Article  CAS  PubMed  Google Scholar 

  68. Michalska EA. Isolation and propagation of mouse embryonic fibroblasts and preparation of mouse embryonic feeder layer cells. Curr Protoc Stem Cell Biol. 2007:1C–3. https://doi.org/10.1002/9780470151808.sc01c03s3.

  69. Reubinoff BE, Pera MF, Fong C-Y, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399–404.

    Article  CAS  PubMed  Google Scholar 

  70. Cobo F, Navarro JM, Herrera MI, Vivo A, Porcel D, Hernández C, et al. Electron microscopy reveals the presence of viruses in mouse embryonic fibroblasts but neither in human embryonic fibroblasts nor in human mesenchymal cells used for hESC maintenance toward an implementation of microbiological quality assurance program in stem cell banks. Cloning Stem Cells. 2008;10(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  71. Kubikova I, Konecna H, Sedo O, Zdrahal Z, Rehulka P, Hribkova H, et al. Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin. Cytotherapy. 2009;11(3):330–40.

    Article  CAS  PubMed  Google Scholar 

  72. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–56.

    Article  CAS  PubMed  Google Scholar 

  73. Hovatta O, Mikkola M, Gertow K, Strömberg AM, Inzunza J, Hreinsson J, et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod. 2003;18(7):1404–9.

    Article  PubMed  Google Scholar 

  74. Inzunza J, Gertow K, Strömberg MA, Matilainen E, Blennow E, Skottman H, et al. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells. 2005;23(4):544–9.

    Article  CAS  PubMed  Google Scholar 

  75. Lee JB, Lee JE, Park JH, Kim SJ, Kim MK, Roh SI, et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free Condition1. Biol Reprod. 2005;72(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  76. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells. 2003;21(5):546–56.

    Article  CAS  PubMed  Google Scholar 

  77. Vallier L, Rugg-Gunn PJ, Bouhon IA, Andersson FK, Sadler AJ, Pedersen RA. Enhancing and diminishing gene function in human embryonic stem cells. Stem Cells. 2004;22(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  78. Xi J, Wang Y, Zhang P, He L, Nan X, Yue W, et al. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells. PLoS One. 2010;5(12):e14457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother. 2000;49(3):152–6.

    Article  CAS  PubMed  Google Scholar 

  80. Dessels C, Potgieter M, Pepper MS. Making the switch: alternatives to fetal bovine serum for adipose-derived stromal cell expansion. Front Cell Dev Biol. 2016;4:115.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988;336(6200):684–7.

    Article  CAS  PubMed  Google Scholar 

  82. Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, King CC, et al. Activin a maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells. 2005;23(4):489–95.

    Article  CAS  PubMed  Google Scholar 

  83. James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 2005;132(6):1273–82.

    Article  CAS  PubMed  Google Scholar 

  84. Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P, et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun. 2005;330(3):934–42.

    Article  CAS  PubMed  Google Scholar 

  85. Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells. 2005;23(3):315–23.

    Article  CAS  PubMed  Google Scholar 

  86. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24(2):185–7.

    Article  CAS  PubMed  Google Scholar 

  87. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(27):11298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Siti-Ismail N, Bishop AE, Polak JM, Mantalaris A. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials. 2008;29(29):3946–52.

    Article  CAS  PubMed  Google Scholar 

  89. Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials. 2010;31(3):404–12.

    Article  CAS  PubMed  Google Scholar 

  90. Orozco-Fuentes S, Neganova I, Wadkin LE, Baggaley AW, Barrio RA, Lako M, et al. Quantification of the morphological characteristics of hESC colonies. Sci Rep. 2019;9(1):17569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Villa-Diaz LG, Pacut C, Slawny NA, Ding J, O’Shea KS, Smith GD. Analysis of the factors that limit the ability of feeder cells to maintain the undifferentiated state of human embryonic stem cells. Stem Cells Dev. 2009;18(4):641–51.

    Article  CAS  PubMed  Google Scholar 

  92. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2000;97(21):11307–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang X, Yang P. In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method. J Vis Exp. 2008;17:825.

    CAS  Google Scholar 

  94. Moustafa LA, Brinster RL. Induced chimaerism by transplanting embryonic cells into mouse blastocysts. J Exp Zool. 1972;181(2):193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells. 2015;7(9):1150–84.

    PubMed  PubMed Central  Google Scholar 

  97. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. 2009;18(7):1093–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  99. Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirie F, Rigby PWJ, et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature. 1990;345(6277):686–92.

    Article  CAS  PubMed  Google Scholar 

  100. Rizzino A. Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley Interdiscip Rev Syst Biol Med. 2009;1(2):228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C, Dracopoli NC, et al. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Investig. 1984;50(2):147–62.

    CAS  PubMed  Google Scholar 

  102. Draper JS, Pigott C, Thomson JA, Andrews PW. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat. 2002;200(Pt 3):249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Badcock G, Pigott C, Goepel J, Andrews PW. The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. Cancer Res. 1999;59(18):4715–9.

    CAS  PubMed  Google Scholar 

  104. Yeom YII, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development. 1996;122(3):881–94.

    CAS  PubMed  Google Scholar 

  105. Werbowetski-Ogilvie TE, Bossé M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol. 2009;27(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  106. Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 2008;100:133–58.

    Article  PubMed  Google Scholar 

  107. van der Bogt KE, Swijnenburg RJ, Cao F, Wu JC. Molecular imaging of human embryonic stem cells: keeping an eye on differentiation, tumorigenicity and immunogenicity. Cell Cycle. 2006;5(23):2748–52.

    Article  PubMed  Google Scholar 

  108. Li N, Long B, Han W, Yuan S, Wang K. microRNAs: important regulators of stem cells. Stem Cell Res Ther. 2017;8(1):110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Morey L, Santanach A, Blanco E, Aloia L, Nora EP, Bruneau BG, et al. Polycomb regulates mesoderm cell fate-specification in embryonic stem cells through activation and repression mechanisms. Cell Stem Cell. 2015;17(3):300–15.

    Article  CAS  PubMed  Google Scholar 

  110. Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18(11):643–58.

    Article  CAS  PubMed  Google Scholar 

  111. Chu LF, Leng N, Zhang J, Hou Z, Mamott D, Vereide DT, et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol. 2016;17(1):173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Nemashkalo A, Ruzo A, Heemskerk I, Warmflash A. Morphogen and community effects determine cell fates in response to BMP4 signaling in human embryonic stem cells. Development. 2017;144(17):3042–53.

    Article  CAS  PubMed  Google Scholar 

  113. Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6(2):88–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gadue P, Huber TL, Nostro MC, Kattman S, Keller GM. Germ layer induction from embryonic stem cells. Exp Hematol. 2005;33(9):955–64.

    Article  CAS  PubMed  Google Scholar 

  116. Gadue P, Huber TL, Paddison PJ, Keller GM. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103(45):16806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002;91(3):189–201.

    Article  CAS  PubMed  Google Scholar 

  118. Rambhatla L, Chiu CP, Kundu P, Peng Y, Carpenter MK. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant. 2003;12(1):1–11.

    Article  PubMed  Google Scholar 

  119. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001;19(12):1129–33.

    Article  CAS  PubMed  Google Scholar 

  120. Wu H, Zhao J, Fu B, Yin S, Song C, Zhang J, et al. Retinoic acid-induced upregulation of miR-219 promotes the differentiation of embryonic stem cells into neural cells. Cell Death Dis. 2017;8(7):e2953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jung D, Xiong J, Ye M, Qin X, Li L, Cheng S, et al. In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun. 2017;8:15680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    Article  PubMed  Google Scholar 

  123. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Parouchev A, et al. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol. 2018;71(4):429–38.

    Article  PubMed  Google Scholar 

  124. Lebkowski J. GRNOPC1: the world’s first embryonic stem cell-derived therapy. Interview with Jane Lebkowski. Regen Med. 2011;6(6 Suppl):11–3.

    Article  PubMed  Google Scholar 

  125. Robert R, Henry JP, Wilensky J, Shapiro AMJ, Senior PA, Roep B, Wang R, Kroon EJ, Scott M, D’amour K, Foyt HL. Initial clinical evaluation of VC-01TM combination product—a stem cell–derived islet replacement for type 1 diabetes (T1D). Arlington: American Diabetes Association; 2018. p. 67.

    Google Scholar 

  126. Golchin A, Farahany TZ. Biological products: cellular therapy and FDA approved products. Stem Cell Rev Rep. 2019;15(2):166–75.

    Article  PubMed  Google Scholar 

  127. Urbach A, Benvenisty N. Studying early lethality of 45,XO (Turner’s syndrome) embryos using human embryonic stem cells. PLoS One. 2009;4(1):e4175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Urbach A, Schuldiner M, Benvenisty N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells. 2004;22(4):635–41.

    Article  CAS  PubMed  Google Scholar 

  129. Biancotti JC, Narwani K, Buehler N, Mandefro B, Golan-Lev T, Yanuka O, et al. Human embryonic stem cells as models for aneuploid chromosomal syndromes. Stem Cells. 2010;28(9):1530–40.

    Article  CAS  PubMed  Google Scholar 

  130. Mateizel I, De Temmerman N, Ullmann U, Cauffman G, Sermon K, Van de Velde H, et al. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod. 2006;21(2):503–11.

    Article  CAS  PubMed  Google Scholar 

  131. Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol. 2003;21(3):319–21.

    Article  CAS  PubMed  Google Scholar 

  132. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell. 2010;6(5):407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Alzubi J, Pallant C, Mussolino C, Howe SJ, Thrasher AJ, Cathomen T. Targeted genome editing restores T cell differentiation in a humanized X-SCID pluripotent stem cell disease model. Sci Rep. 2017;7(1):12475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Flynn R, Grundmann A, Renz P, Hanseler W, James WS, Cowley SA, et al. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. 2015;43(10):838–48. e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kuo CY, Long JD, Campo-Fernandez B, de Oliveira S, Cooper AR, Romero Z, et al. Site-specific gene editing of human hematopoietic stem cells for X-linked hyper-IgM syndrome. Cell Rep. 2018;23(9):2606–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146(2):318–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gupta N, Susa K, Yoda Y, Bonventre JV, Valerius MT, Morizane R. CRISPR/Cas9-based targeted genome editing for the development of monogenic diseases models with human pluripotent stem cells. Curr Protoc Stem Cell Biol. 2018;45(1):e50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153(6):1228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Trounson A, McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell. 2015;17(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  141. Council IoMaNR. Final Report of the National Academies’ Human Embryonic Stem Cell Research Advisory Committee and 2010 Amendments to the National Academies’ Guidelines for Human Embryonic Stem Cell Research. Final Report of the National Academies’ Human Embryonic Stem Cell Research Advisory Committee and 2010 Amendments to the National Academies’ guidelines for human embryonic stem cell research. Washington, DC: The National Academies; 2010.

    Google Scholar 

  142. Perez-Cunningham J, Ames E, Smith RC, Peter AK, Naidu R, Nolta JA, et al. Natural killer cell subsets differentially reject embryonic stem cells based on licensing. Transplantation. 2014;97(10):992–8.

    Article  CAS  PubMed  Google Scholar 

  143. Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci. 2010;28(4):589–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Li XL, Li GH, Fu J, Fu YW, Zhang L, Chen W, et al. Highly efficient genome editing via CRISPR-Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Res. 2018;46(19):10195–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant # 5300 from the Egyptian Science and Technology Development Fund (STDF), and by internal funding from Zewail City of Science and Technology (ZC 003-2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaimaa Shouman , Alaa E. Hussein or Nagwa El-Badri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shouman, S., Hussein, A.E., Essawy, M., Abdelfattah-Hassan, A., El-Badri, N. (2020). Embryonic and Pluripotent Stem Cells. In: El-Badri, N. (eds) Regenerative Medicine and Stem Cell Biology . Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-55359-3_2

Download citation

Publish with us

Policies and ethics