Skip to main content

Mapping the Brain During Awake Surgery for Patients with Neurological Disorders Including Brain Tumors

  • Chapter
  • First Online:
Principles of Neuro-Oncology

Abstract

Awake mapping of the brain using cortical and subcortical direct electrical stimulation is considered the gold standard treatment for patients with brain lesions located in eloquent regions. In surgical neuro-oncology, awake craniotomies with brain mapping have proven to be an effective tool to achieve improved survival through greater extent of resection and preserving quality of life. Mapping of the brain cortex and white matter tracts also allows a better understanding of the neural networks that underlie high-level cognitive processes, such as language, executive functions, and others. Current and future advances will undoubtedly lead to more beneficial surgical procedures; however, neurosurgeons should always remember that patient needs are of utmost importance and should guide final decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 April 2021

    The chapter was published inadvertently with the wrong video legends and now the legends are updated as below:

References

  1. Zamora-Berridi GJ, Pendleton C, Ruiz G, Cohen-Gadol AA, Quinones-Hinojosa A. Santiago Ramon y Cajal and Harvey Cushing: two forefathers of neuroscience and neurosurgery. World Neurosurg. 2011;76(5):466–76.

    Article  PubMed  Google Scholar 

  2. Ramon y Cajal S. Neuron theory or reticular theory? [Purkiss MU, Fox CA. Trans.]. Madrid: Institute Ramon y Cajal; 1954.

    Google Scholar 

  3. Llinas RR. The contribution of Santiago Ramon y Cajal to functional neuroscience. Nat Rev Neurosci. 2003;4(1):77–80.

    Article  CAS  PubMed  Google Scholar 

  4. Broca PP. Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Paris: Masson; 1861.

    Google Scholar 

  5. Wernicke C. Der aphasische Symptomencomplex: eine psychologische Studie auf anatomischer Basis. Berlin: Springer; 1974. Reprint edition.

    Book  Google Scholar 

  6. Rahimpour S, Haglund MM, Friedman AH, Duffau H. History of awake mapping and speech and language localization: from modules to networks. Neurosurg Focus. 2019;47(3):E4.

    Article  PubMed  Google Scholar 

  7. Fritsch G, Hitzig E. Electric excitability of the cerebrum (Uber die elektrische Erregbarkeit des Grosshirns). Epilepsy Behav. 2009;15(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  8. Grünbaum ASF, Sherrington CS. Observations on the physiology of the cerebral cortex of some of the higher apes. (Preliminary communication). Proc R Soc Lond. 1902;69(451–458):206–9.

    Google Scholar 

  9. Pendleton C, Zaidi HA, Chaichana KL, et al. Harvey Cushing’s contributions to motor mapping: 1902-1912. Cortex. 2012;48(1):7–14.

    Article  PubMed  Google Scholar 

  10. Campbell AW. Histological studies on the localisation of cerebral function: University Press; 1905.

    Google Scholar 

  11. Sarikcioglu L. Otfrid Foerster (1873-1941): one of the distinguished neuroscientists of his time. J Neurol Neurosurg Psychiatry. 2007;78(6):650.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Foerster O, Penfield W. THE STRUCTURAL BASIS OF TRAUMATIC EPILEPSY AND RESULTS OF RADICAL OPERATION1. Brain J Neurol. 1930;53(2):99–119.

    Article  Google Scholar 

  13. Penfield W, Roberts L. Speech and brain mechanisms, vol. 47. Princeton, NJ/London: Princeton University Press/Oxford University Press; 1960.

    Google Scholar 

  14. Schildkrout B, MacGillivray L, Lauterbach M. Wilder Penfield and the architecture of collaboration. J Neuropsychiatry Clin Neurosci. 2019;31(4):397–8.

    Article  PubMed  Google Scholar 

  15. Quinones-Hinojosa A, Ojemann SG, Sanai N, Dillon WP, Berger MS. Preoperative correlation of intraoperative cortical mapping with magnetic resonance imaging landmarks to predict localization of the Broca area. J Neurosurg. 2003;99(2):311–8.

    Article  PubMed  Google Scholar 

  16. Auguste KI, Quinones-Hinojosa A, Gadkary C, Zada G, Lamborn KR, Berger MS. Incidence of venous thromboembolism in patients undergoing craniotomy and motor mapping for glioma without intraoperative mechanical prophylaxis to the contralateral leg. J Neurosurg. 2003;99(4):680–4.

    Article  PubMed  Google Scholar 

  17. Walker JA, Quinones-Hinojosa A, Berger MS. Intraoperative speech mapping in 17 bilingual patients undergoing resection of a mass lesion. Neurosurgery. 2004;54(1):113–7; discussion 118.

    Article  PubMed  Google Scholar 

  18. Quinones-Hinojosa A, Lyon R, Du R, Lawton MT. Intraoperative motor mapping of the cerebral peduncle during resection of a midbrain cavernous malformation: technical case report. Neurosurgery. 2005;56(2 Suppl):E439; discussion E439.

    PubMed  Google Scholar 

  19. Tatum WO, Feyissa AM, ReFaey K, et al. Periodic focal epileptiform discharges. Clin Neurophysiol. 2019;130(8):1320–8.

    Article  PubMed  Google Scholar 

  20. Eseonu CI, Rincon-Torroella J, Lee YM, ReFaey K, Tripathi P, Quinones-Hinojosa A. Intraoperative seizures in awake craniotomy for perirolandic glioma resections that undergo cortical mapping. J Neurol Surg A Cent Eur Neurosurg. 2018;79(3):239–46.

    Article  PubMed  Google Scholar 

  21. Chaichana KL, Jusue-Torres I, Navarro-Ramirez R, et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro-Oncology. 2014;16(1):113–22.

    Article  PubMed  Google Scholar 

  22. Chaichana KL, Cabrera-Aldana EE, Jusue-Torres I, et al. When gross total resection of a glioblastoma is possible, how much resection should be achieved? World Neurosurg. 2014;82(1-2):e257–65.

    Article  PubMed  Google Scholar 

  23. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(20):2559–65.

    Article  Google Scholar 

  24. Gerritsen JKW, Arends L, Klimek M, Dirven CMF, Vincent AJE. Impact of intraoperative stimulation mapping on high-grade glioma surgery outcome: a meta-analysis. Acta Neurochir. 2019;161(1):99–107.

    Article  PubMed  Google Scholar 

  25. Brown T, Shah AH, Bregy A, et al. Awake craniotomy for brain tumor resection: the rule rather than the exception? J Neurosurg Anesthesiol. 2013;25(3):240–7.

    Article  PubMed  Google Scholar 

  26. Eseonu CI, Rincon-Torroella J, ReFaey K, Quinones-Hinojosa A. The cost of brain surgery: awake vs asleep craniotomy for perirolandic region tumors. Neursossurgery. 2017;81(2):307–14.

    Article  Google Scholar 

  27. Eseonu CI, Rincon-Torroella J, ReFaey K, et al. Awake craniotomy vs craniotomy under general anesthesia for perirolandic gliomas: evaluating perioperative complications and extent of resection. Neurosurgery. 2017;81(3):481–9.

    Article  PubMed  Google Scholar 

  28. Eseonu CI, ReFaey K, Garcia O, John A, Quinones-Hinojosa A, Tripathi P. Awake craniotomy anesthesia: a comparison of the monitored anesthesia care and asleep-awake-asleep techniques. World Neurosurg. 2017;104:679–86.

    Article  PubMed  Google Scholar 

  29. Skirboll SS, Ojemann GA, Berger MS, Lettich E, Winn HR. Functional cortex and subcortical white matter located within gliomas. Neurosurgery. 1996;38(4):678–84; discussion 684–675.

    Article  CAS  PubMed  Google Scholar 

  30. Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4(8):476–86.

    Article  PubMed  Google Scholar 

  31. Yordanova YN, Moritz-Gasser S, Duffau H. Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. Clinical article. J Neurosurg. 2011;115(2):232–9.

    Article  PubMed  Google Scholar 

  32. Eseonu CI, Eguia F, ReFaey K, et al. Comparative volumetric analysis of the extent of resection of molecularly and histologically distinct low grade gliomas and its role on survival. J Neuro-Oncol. 2017;134(1):65–74.

    Article  Google Scholar 

  33. Kluger HM, Chiang V, Mahajan A, et al. Long-term survival of patients with melanoma with active brain metastases treated with pembrolizumab on a phase II trial. J Clin Oncol. 2019;37(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  34. Sloot S, Chen YA, Zhao X, et al. Improved survival of patients with melanoma brain metastases in the era of targeted BRAF and immune checkpoint therapies. Cancer. 2018;124(2):297–305.

    Article  CAS  PubMed  Google Scholar 

  35. Lehrer EJ, McGee HM, Peterson JL, et al. Stereotactic radiosurgery and immune checkpoint inhibitors in the management of brain metastases. Int J Molec Sci. 2018;19(10).

    Google Scholar 

  36. Patchell RA, Tibbs PA, Walsh JW, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 1990;322(8):494–500.

    Article  CAS  PubMed  Google Scholar 

  37. Patchell RA, Tibbs PA, Regine WF, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA. 1998;280(17):1485–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kocher M, Soffietti R, Abacioglu U, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(2):134–41.

    Article  Google Scholar 

  39. Ranasinghe MG, Sheehan JM. Surgical management of brain metastases. Neurosurg Focus. 2007;22(3):E2.

    Article  PubMed  Google Scholar 

  40. Sanmillan JL, Fernandez-Coello A, Fernandez-Conejero I, Plans G, Gabarros A. Functional approach using intraoperative brain mapping and neurophysiological monitoring for the surgical treatment of brain metastases in the central region. J Neurosurg. 2017;126(3):698–707.

    Article  PubMed  Google Scholar 

  41. Chua TH, See AAQ, Ang BT, King NKK. Awake craniotomy for resection of brain metastases: a systematic review. World Neurosurg. 2018;120:e1128–35.

    Article  PubMed  Google Scholar 

  42. Ruiz-Garcia HJ, Peterson JL, Trifiletti DM. Radiating in eloquent regions. In: Brain mapping: indications and techniques, vol. 1. United States: Thieme; 2019.

    Google Scholar 

  43. Marchan EM, Peterson J, Sio TT, et al. Postoperative cavity stereotactic radiosurgery for brain metastases. Front Oncol. 2018;8:342.

    Article  PubMed  PubMed Central  Google Scholar 

  44. ReFaey K, Chaichana KL, Feyissa AM, et al. A 360 degrees electronic device for recording high-resolution intraoperative electrocorticography of the brain during awake craniotomy. J Neurosurg. 2019:1–8.

    Google Scholar 

  45. Roux FE, Durand JB, Djidjeli I, Moyse E, Giussani C. Variability of intraoperative electrostimulation parameters in conscious individuals: language cortex. J Neurosurg. 2017;126(5):1641–52.

    Article  PubMed  Google Scholar 

  46. Chang EF, Breshears JD, Raygor KP, Lau D, Molinaro AM, Berger MS. Stereotactic probability and variability of speech arrest and anomia sites during stimulation mapping of the language dominant hemisphere. J Neurosurg. 2017;126(1):114–21.

    Article  PubMed  Google Scholar 

  47. Riva M, Fava E, Gallucci M, et al. Monopolar high-frequency language mapping: can it help in the surgical management of gliomas? A comparative clinical study. J Neurosurg. 2016;124(5):1479–89.

    Article  PubMed  Google Scholar 

  48. Duffau H. Stimulation mapping of white matter tracts to study brain functional connectivity. Nat Rev Neurol. 2015;11(5):255–65.

    Article  PubMed  Google Scholar 

  49. Ruis C. Monitoring cognition during awake brain surgery in adults: a systematic review. J Clin Exp Neuropsychol. 2018;40(10):1081–104.

    Article  PubMed  Google Scholar 

  50. Aibar-Duran JA, de Quintana-Schmidt C, Alvarez Holzpafel MJ, et al. Intraoperative use and benefits of tractography in awake surgery patients. World Neurosurg. 2020;137:e347–53.

    Article  PubMed  Google Scholar 

  51. Stopa BM, Senders JT, Broekman MLD, Vangel M, Golby AJ. Preoperative functional MRI use in neurooncology patients: a clinician survey. Neurosurg Focus. 2020;48(2):E11.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Giussani C, Roux FE, Ojemann J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery. 2010;66(1):113–20.

    Article  PubMed  Google Scholar 

  53. Lemee JM, Berro DH, Bernard F, et al. Resting-state functional magnetic resonance imaging versus task-based activity for language mapping and correlation with perioperative cortical mapping. Brain Behav. 2019;9(10):e01362.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kuchcinski G, Mellerio C, Pallud J, et al. Three-tesla functional MR language mapping: comparison with direct cortical stimulation in gliomas. Neurology. 2015;84(6):560–8.

    Article  CAS  PubMed  Google Scholar 

  55. Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61(5):935–48; discussion 948-939.

    Article  PubMed  Google Scholar 

  56. Boetto J, Bertram L, Moulinie G, Herbet G, Moritz-Gasser S, Duffau H. Low rate of intraoperative seizures during awake craniotomy in a prospective cohort with 374 supratentorial brain lesions: electrocorticography is not mandatory. World Neurosurg. 2015;84(6):1838–44.

    Article  PubMed  Google Scholar 

  57. Karkar KM, Garcia PA, Bateman LM, Smyth MD, Barbaro NM, Berger M. Focal cooling suppresses spontaneous epileptiform activity without changing the cortical motor threshold. Epilepsia. 2002;43(8):932–5.

    Article  PubMed  Google Scholar 

  58. Wang YC, Lee CC, Takami H, et al. Awake craniotomies for epileptic gliomas: intraoperative and postoperative seizure control and prognostic factors. J Neuro-Oncol. 2019;142(3):577–86.

    Article  CAS  Google Scholar 

  59. Bojaxhi EB, Perry J. Anesthetic considerations for intraoperative cerebral brain mapping. In: Quinones-Hinojosa A, Chaichana K, Mahato D, editors. Brain mapping: indications and techniques, vol. 1. United States: Thieme; 2019.

    Google Scholar 

  60. Fontaine D, Almairac F. Pain during awake craniotomy for brain tumor resection. Incidence, causes, consequences and management. Neurochirurgie. 2017;63(3):204–7.

    Article  CAS  PubMed  Google Scholar 

  61. Fontaine D, Almairac F, Santucci S, et al. Dural and pial pain-sensitive structures in humans: new inputs from awake craniotomies. Brain J Neurol. 2018;141(4):1040–8.

    Article  Google Scholar 

  62. Potters JW, Klimek M. Awake craniotomy: improving the patient’s experience. Curr Opin Anaesthesiol. 2015;28(5):511–6.

    Article  PubMed  Google Scholar 

  63. Hansen E, Bejenke C. Negative and positive suggestions in anaesthesia: improved communication with anxious surgical patients. Anaesthesist. 2010;59(3):199–202, 204-196, 208-199.

    Article  CAS  PubMed  Google Scholar 

  64. Herbet G, Maheu M, Costi E, Lafargue G, Duffau H. Mapping neuroplastic potential in brain-damaged patients. Brain J Neurol. 2016;139(Pt 3):829–44.

    Article  Google Scholar 

  65. De Melo MA, De Oliveira E. Anatomy of eloquent cortical brain regions. In: Quinones-Hinojosa A, Chaichana K, Mahato D, editors. Brain mapping: indications and techniques, vol. 1. United States: Thieme; 2019.

    Google Scholar 

  66. Quillis-Quesada V, Chen S. Anatomy of eloquent white matter tracts. In: Quinones-Hinojosa A, Chaichana K, Mahato D, editors. Brain mapping: indications and techniques, vol. 1. United States: Thieme; 2019.

    Google Scholar 

  67. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. 1954.

    Book  Google Scholar 

  68. Penfield W, Welch K. The supplementary motor area of the cerebral cortex; a clinical and experimental study. AMA Arch Neurol Psychiatry. 1951;66(3):289–317.

    Article  CAS  PubMed  Google Scholar 

  69. Rostomily RC, Berger MS, Ojemann GA, Lettich E. Postoperative deficits and functional recovery following removal of tumors involving the dominant hemisphere supplementary motor area. J Neurosurg. 1991;75(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  70. Tanji J. The supplementary motor area in the cerebral cortex. Neurosci Res. 1994;19(3):251–68.

    Article  CAS  PubMed  Google Scholar 

  71. Lee KM, Chang KH, Roh JK. Subregions within the supplementary motor area activated at different stages of movement preparation and execution. NeuroImage. 1999;9(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  72. Teitti S, Maatta S, Saisanen L, et al. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles. NeuroImage. 2008;40(3):1243–50.

    Article  CAS  PubMed  Google Scholar 

  73. Fontaine D, Capelle L, Duffau H. Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery. 2002;50(2):297–303; discussion 303-295.

    PubMed  Google Scholar 

  74. Vogt C, Vogt O. Allgemeinere ergebnisse unserer hirnforschung. J Psychol Neurol. 1919;25:279–439.

    Google Scholar 

  75. Picard N, Strick PL. Imaging the premotor areas. Curr Opin Neurobiol. 2001;11(6):663–72.

    Article  CAS  PubMed  Google Scholar 

  76. Duffau H, Capelle L, Denvil D, et al. The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. NeuroImage. 2003;20(4):1903–14.

    Article  PubMed  Google Scholar 

  77. Duffau H. Cortical and subcortical brain mapping. In: Quinones-Hinojosa A, editor. Schmidek and sweet operative neurosurgical techniques, vol. 1. United States: Elsevier; 2012. p. 2592.

    Google Scholar 

  78. Middlebrooks EH, Yagmurlu K, Szaflarski JP, Rahman M, Bozkurt B. A contemporary framework of language processing in the human brain in the context of preoperative and intraoperative language mapping. Neuroradiology. 2017;59(1):69–87.

    Article  PubMed  Google Scholar 

  79. Rolston JD, Englot DJ, Benet A, Li J, Cha S, Berger MS. Frontal operculum gliomas: language outcome following resection. J Neurosurg. 2015;122(4):725–34.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kirkman M, Davies C, Samandouras G. Mapping and surgery of insular tumors. In: Quinones-Hinojosa A, Chaichana K, Mahato D, editors. Brain mapping: indications and techniques, vol. 1. United States: Thieme; 2019.

    Google Scholar 

  81. Devlin JT, Matthews PM, Rushworth MF. Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci. 2003;15(1):71–84.

    Article  PubMed  Google Scholar 

  82. Mandonnet E, Nouet A, Gatignol P, Capelle L, Duffau H. Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain J Neurol. 2007;130(Pt 3):623–9.

    Article  Google Scholar 

  83. Zemmoura I, Herbet G, Moritz-Gasser S, Duffau H. New insights into the neural network mediating reading processes provided by cortico-subcortical electrical mapping. Hum Brain Mapp. 2015;36(6):2215–30.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Papagno C, Casarotti A, Comi A, et al. Long-term proper name anomia after removal of the uncinate fasciculus. Brain Struct Funct. 2016;221(1):687–94.

    Article  PubMed  Google Scholar 

  85. Duffau H. Awake subcortical mapping of the ventral and dorsal streams for language. In: Quinones-Hinojosa A, Chaichana K, Mahato D, editors. Brain mapping: indications and techniques, vol. 1. United States: Thieme; 2019.

    Google Scholar 

  86. Chang EF, Raygor KP. Berger MS. Contemporary model of language organization: an overview for neurosurgeons. 2015;122(2):250.

    Google Scholar 

  87. Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8(5):393–402.

    Article  CAS  PubMed  Google Scholar 

  88. Duffau H, Gatignol P, Moritz-Gasser S, Mandonnet E. Is the left uncinate fasciculus essential for language? A cerebral stimulation study. J Neurol. 2009;256(3):382–9.

    Article  PubMed  Google Scholar 

  89. Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR. Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain J Neurol. 2013;136(Pt 6):1692–707.

    Article  Google Scholar 

  90. Klein AP, Sabsevitz DS, Ulmer JL, Mark LP. Imaging of cortical and white matter language processing. Semin Ultrasound CT MR. 2015;36(3):249–59.

    Article  PubMed  Google Scholar 

  91. Sarubbo S, De Benedictis A, Merler S, et al. Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation. Hum Brain Mapp. 2016;37(11):3858–72.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL Jr. Fiber tracts of the dorsal language stream in the human brain. J Neurosurg. 2016;124(5):1396–405.

    Article  PubMed  Google Scholar 

  93. Thiebaut de Schotten M, Urbanski M, Duffau H, et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science. 2005;309(5744):2226–8.

    Article  CAS  PubMed  Google Scholar 

  94. Bartolomeo P. A parietofrontal network for spatial awareness in the right hemisphere of the human brain. Arch Neurol. 2006;63(9):1238–41.

    Article  PubMed  Google Scholar 

  95. Surhrue M. Surgery around the command and control axis: the default mode, control, and frontal aslant systems. In: Quinones-Hinojosa A, Chaichana K, Mahato D, editors. Brain mapping: indications and techniques, vol. 1. United States: Thieme; 2019.

    Google Scholar 

  96. ReFaey K, Tripathi S, Grewal S, Chaichana K, Quinones-HInojosa A. Awake craniotomy operating room setup and surgical instruments. In: Quinones-Hinojosa A, Chaichana K, Mahato D, editors. Brain mapping: indications and techniques, vol. 1. United States: Thieme; 2019.

    Google Scholar 

  97. Glasser MF, Smith SM, Marcus DS, et al. The Human Connectome Project’s neuroimaging approach. Nat Neurosci. 2016;19(9):1175–87.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hart MG, Ypma RJ, Romero-Garcia R, Price SJ, Suckling J. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery. J Neurosurg. 2016;124(6):1665–78.

    Article  PubMed  Google Scholar 

  99. Ille S, Gempt J, Meyer B, Krieg SM. nTMS guidance of awake surgery for highly eloquent gliomas. Neurosurg Focus. 2018;45(VideoSuppl2):V9.

    Google Scholar 

  100. Schramm S, Albers L, Ille S, et al. Navigated transcranial magnetic stimulation of the supplementary motor cortex disrupts fine motor skills in healthy adults. Sci Rep. 2019;9(1):17744.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tussis L, Sollmann N, Boeckh-Behrens T, Meyer B, Krieg SM. The cortical distribution of first and second language in the right hemisphere of bilinguals – an exploratory study by repetitive navigated transcranial magnetic stimulation. Brain Imaging Behav. 2019.

    Google Scholar 

Download references

Conflicts of Interest

None.

Disclosure of Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Quinones-Hinojosa .

Editor information

Editors and Affiliations

21.1 Electronic Supplementary Material

Surgical Technique for Awake Mapping in a case of high-grade glioma patient. (MP4 7664 kb)

Three-dimensional Reconstruction of the tumor and simulated white matter tracts around the lesion

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruiz-Garcia, H., Middlebrooks, E., Sabsevitz, D., Bechtle, P., Quinones-Hinojosa, A. (2021). Mapping the Brain During Awake Surgery for Patients with Neurological Disorders Including Brain Tumors. In: Monroy-Sosa, A., Chakravarthi, S.S., de la Garza-Salazar, J.G., Meneses Garcia, A., Kassam, A.B. (eds) Principles of Neuro-Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-54879-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54879-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54878-0

  • Online ISBN: 978-3-030-54879-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics