Skip to main content

Amino Acid Nutrition and Reproductive Performance in Ruminants

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1285))

Abstract

Amino acids (AAs) are essential for the survival, growth and development of ruminant conceptuses. Most of the dietary AAs (including L-arginine, L-lysine, L-methionine and L-glutamine) are extensively catabolized by the ruminal microbes of ruminants to synthesize AAs and microbial proteins (the major source of AAs utilized by cells in ruminant species) in the presence of sufficient carbohydrates (mainly cellulose and hemicellulose), nitrogen, and sulfur. Results of recent studies indicate that the ruminal microbes of adult steers and sheep do not degrade extracellular L-citrulline and have a limited ability to metabolize extracellular L-glutamate due to little or no uptake by the cells. Although traditional research in ruminant protein nutrition has focused on AAs (e.g., lysine and methionine for lactating cows) that are not synthesized by eukaryotic cells, there is growing interest in the nutritional and physiological roles of AAs (e.g., L-arginine, L-citrulline, L-glutamine and L-glutamate) in gestating ruminants (e.g., cattle, sheep and goats) and lactating dairy cows. Results of recent studies show that intravenous administration of L-arginine to underfed, overweight or prolific ewes enhances fetal growth, theĀ development of brown fat in fetuses, and theĀ survival of neonatal lambs. Likewise, dietary supplementation with either rumen-protected L-arginine or unprotected L-citrulline to gestating sheep or beef cattle improved embryonic survival. Because dietary L-citrulline and L-glutamate are not degraded by ruminal microbes, addition of these two amino acids may be a new useful, cost-effective method for improving the reproductive efficiency of ruminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

amino acid

DAPA:

2,6-diaminopimelic acid

DDG:

dried distillers grain

DIP:

digested intake protein

EAA:

nutritionally essential amino acid

GnRH:

gonadotropin-releasing hormone

IUGR:

intrauterine growth restriction

NEAA:

nutritionally nonessential amino acid

NO:

nitric oxide

NPN:

non-protein nitrogen

RPAA:

rumen-protected amino acid

RUAA:

rumen-unprotected amino acid

RUP:

ruminally undegraded protein

UIP:

undegraded intake protein

References

  • Amundson JL, Mader TL, Rasby RJ, Hu QS (2006) Environmental effects on pregnancy rate in beef cattle. J Anim Sci 84:3415ā€“3420

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Armentano LE, Bertics SJ, Ducharme GA (1997) Response of lactating cows to methionine or methionine plus lysine added to high protein diets based on alfalfa and heated soybeans. J Dairy Sci 80:1194ā€“1199

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bach A, Calsamiglia S, Stern MD (2005) Nitrogen metabolism in the rumen. J Dairy Sci 88(Suppl):E9ā€“E21

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Bazer FW, Johnson GA, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23ā€“52

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bazer FW, Lamb GC, Wu G (2020) Animal agriculture: challenges, innovations, and sustainability. Elsevier, New York

    Google ScholarĀ 

  • Bellows RA, Short RE, Staigmiller RB (1979) Research areas in beef cattle reproduction. In: Hawk HW (ed) Beltsville Symposia in agricultural research ā€“ animal reproduction, 3rd edn. Wiley, New York, pp 3ā€“18

    Google ScholarĀ 

  • Bellows RA, Short RE, Staigmiller RB, Milmine WL (1988) Effects of induced parturition and early obstetrical assistance in beef cattle. J Anim Sci 66:1073ā€“1080

    Google ScholarĀ 

  • Bellows DS, Ott SL, Bellows RA (2002) Review: cost of reproductive disease and conditions in cattle. Prof Anim Sci 18:26ā€“32

    ArticleĀ  Google ScholarĀ 

  • Bergen WG (1979) Free amino acids in blood of ruminants ā€“ physiology and nutritional regulation. J Anim Sci 49(6):1577ā€“1589

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bergen WG (2020) Amino acids in beef cattle nutrition and production. Adv Exp Med Biol 1285:29ā€“42

    Google ScholarĀ 

  • Biggers BG, Geisert RD, Wetteman RP, Buchanan DS (1987) Effect of heat stress on early embryonic development in the beef cow. J Anim Sci 64:1512ā€“1518

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Black AL, Kleiber M, Smith AH, Stewart DN (1957) Acetate as a precursor of amino acids of casein in the intact dairy cow. Biochim Biophys Acta 23:54ā€“59

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Brake DW, Titgemeyer EC, Anderson DE (2014) Duodenal supply of glutamate and casein both improve intestinal starch digestion in cattle but by apparently different mechanisms. J Anim Sci 92:4057ā€“4067

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Butter PJ, Folds AN (1985) Amino acid requirements of ruminants. In: Haresign W, Cole DJA (eds) Recent advances in animal nutrition. Butterworth-Heinemann Ltd, pp 257ā€“271

    Google ScholarĀ 

  • Canale CJ, Muller LD, McCahon HA, Whitsel TJ, Varga GA, Lormore MJ (1990) Dietary fat and ruminally protected amino acids for high producing dairy cows. J Dairy Sci 73:135ā€“141

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chalupa W (1975) Rumen bypass and protection of proteins and amino acids. J Dairy Sci 58:1198ā€“1218

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chalupa W (1976) Degradation of amino acids by the mixed rumen microbial population. J Anim Sci 43:828ā€“834

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Clark JH, Klusmeyer TH, Cameron MR (1992) Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J Dairy Sci 75:2304ā€“2323

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cozzi G, Andrighetto I, Berzaghi P (1995) In-situ ruminal disappearance of essential amino acids in protein feedstuffs. J Dairy Sci 78:161ā€“171

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dahlen C, Larson J, Lamb GC (2014) Impacts of reproductive technologies on beef production in the United States. Adv Exp Med Biol 752:97ā€“114

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Dai ZL, Zhang J, Wu G, Zhu WY (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201ā€“1215

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Davenport GM, Boling JA, Schillo KK (1995) Growth and endocrine responses of lambs fed rumen-protected ornithine and arginine. Small Rumin Res 17:229ā€“236

    ArticleĀ  Google ScholarĀ 

  • De Boo HA, Van Zijl PJ, Smith DEC, Kulik W, Lafeber HN, Harding JE (2005) Arginine and mixed amino acids increase protein accretion in growth restricted and normal ovine fetus by different mechanisms. Pediatr Res 58:270ā€“277

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • de ChĆ”vez JAR, GuzmĆ”n A, Zamora-GutiĆ©rrez D, Mendoza GD, Melgoza LM, Montes S, Rosales-Torres AM (2015) Supplementation with rumen-protected L-arginine-HCl increased fertility in sheep with synchronized estrus. Trop Anim Health Prod 47:1067ā€“1073

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Dinn NE, Shelford JA, Fisher LJ (1998) Use of the Cornell net carbohydrate and protein system and rumen-protected lysine and methionine to reduce nitrogen excretion from lactating dairy cows. J Dairy Sci 81:229ā€“237

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Diskin MG, Sreenan JM (1980) Fertilization and embryonic mortality rates in beef heifers after artificial insemination. J Repro Fert 59:463ā€“468

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Diskin MG, Parr MH, Morris DG (2011) Embryo death in cattle: an update. Reprod Fertil Dev 24:244ā€“251

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Downes AM (1961) On the amino acids essential for the tissues of the sheep. Aust J Biol Sci 14:254ā€“259

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dunn TG, Moss GE (1992) Effects of nutrient deficiencies and excesses on reproductive efficiency of livestock. J Anim Sci 70:1580ā€“1593

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Firkins JL, Yu Z, Morrison M (2007) Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy. J Dairy Sci 90(Suppl 1):E1ā€“E16

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Ganev G, Orskov ER, Smart RM (1979) The effect of roughage or concentrate feeding and rumen retention time on total degradation of protein in the rumen. J Agric Sci 93:651ā€“656

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gilbreath KR, Bazer FW, Satterfield MC, Cleere JJ, Wu G (2018) Dietary supplementation with an arginine product between days 1 and 60 of gestation enhances embryonic survival in lactating beef cows. J Anim Sci 96(Suppl 3):373

    PubMed CentralĀ  Google ScholarĀ 

  • Gilbreath KR, Nawaratna GI, Wickersham TA, Satterfield MC, Bazer FW, Wu G (2019) Ruminal microbes of adult steers do not degrade extracellular L-citrulline and have a limited ability to metabolize extra-cellular L-glutamate. J Anim Sci 97:3611ā€“3616

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gilbreath KR, Nawaratna GI, Wickersham TA, Satterfield MC, Bazer FW, Wu G (2020a) Metabolic studies reveal that ruminal microbes of adult steers do not degrade rumen-protected or unprotected L-citrulline. J Anim Sci 98:pii: skz370

    ArticleĀ  Google ScholarĀ 

  • Gilbreath KR, Bazer FW, Satterfield MC, Cleere JJ, Wu G (2020b) Ruminal microbes of adult sheep do not degrade extracellular L-citrulline. J Anim Sci 98:skaa164

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gustafsson H (1985) Characteristics of embryos from repeat breeder and virgin heifers. Theriogenology 23:487ā€“498

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hannah SM, Cocheran RC, Vanzant ES, Harmon DL (1991) Influence of protein supplementation on sites and extent of digestion, forage intake, and nutrient flow characteristics in steers consuming dormant blue stem-range forage. J Anim Sci 69:2624ā€“2633

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hess BW, Schjolljegerdes EJ, Coleman SA, Williams JE (1998) Supplemental protein plus ruminally protected methionine and lysine for primiparous beef cattle consuming annual rye hay. J Anim Sci 76:1767ā€“1777

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hosomi M, Stace NH, Lirussi F, Smith SM, Murphy GM, Dowling RH (1987) Role of polyamines in intestinal adaptation in the rat. Eur J Clin Investig 17:375ā€“385

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hou Y, Wu G (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8:137ā€“139

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hou YQ, Wu G (2018) L-Glutamate nutrition and metabolism in swine. Amino Acids 50:1497ā€“1510

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hou YQ, Yin YL, Wu G (2015) Dietary essentiality of ā€œnutritionally nonessential amino acidsā€ for animals and humans. Exp Biol Med 240:997ā€“1007

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153ā€“1165

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hvelplund T (1986) The influence of diet on nitrogen and amino acid content of mixed rumen bacteria. Acta Agric Scand 36:325ā€“331

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Illg DJ, Sommerfeldt JL, Schingoethe DJ (1987) Lactational and systemic responses to the supplementation of protected methionine in soybean meal diets. J Dairy Sci 70:620ā€“629

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Izumi K, Kikuchi C, Okamoto M (2000) Effect of rumen protected methionine on lactational performance of dairy cows. Asian Australas J Anim Sci 13:1235ā€“1238

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Keisler DH, Lucy MC (1996) Perception and interpretation of the effects of undernutrition on reproduction. J Anim Sci 74(Suppl 3):1ā€“17

    ArticleĀ  Google ScholarĀ 

  • Keith AB, Satterfield MC, Bazer FW, Wu G (2018) Dietary supplementation with a rumen-protected L-arginine product enhances milk production by dairy cows. J Dairy Sci 101(Suppl 2):408

    Google ScholarĀ 

  • Kirchgessner M, Maierhofer R, Schwarz FJ, Eidelsburger U (1993) Effect of feeding protected arginine on food intake, milk yield and growth hormone and amino acid levels in blood plasma of cows during the summer feeding period with grass. Arch Tierernahr 45:57Ā­-69

    Google ScholarĀ 

  • Kung L, Rode LM (1996) Amino acid metabolism in ruminants. Anim Feed Sci Technol 59:167ā€“172

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lammers-Weinhoven SCW, Voigt J, Ram L, Van Bruchem J, Ketelaars J, Tammings S (1998) Effect of cell walls, dry matter and protein supply on endogenous nitrogen flow in the small intestine of sheep. J Anim Physiol Anim Nutr 79:225ā€“236

    ArticleĀ  Google ScholarĀ 

  • Lapierre H, Pacheco D, Berthiaume R, Ouellet DR, Schwab CG, Dubreuil P, Lobley GE (2006) What is the true supply of amino acids for a dairy cow? J Dairy Sci 89(Suppl):E1ā€“E14

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Larsen M, Madsen TG, Weisbjerg MR, Hvelplund T, Madsen J (2010) Endogenous amino acid flow in the duodenum of dairy cows. Acta Agric Scand 50:161ā€“173

    Google ScholarĀ 

  • Lassala A, Bazer FW, Cudd TA, Li P, Li XL, Satterfield MC, Spencer TE, Wu G (2009) Intravenous administration of L-citrulline to pregnant ewes is more effective than L-arginine for increasing arginine availability in the fetus. J Nutr 139:660ā€“665

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G (2010) Parenteral administration of L-arginine prevents fetal growth restriction in undernourished ewes. J Nutr 140:1242ā€“1248

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G (2011) Parenteral administration of L-arginine enhances fetal survival and growth in sheep carrying multiple pregnancies. J Nutr 141:849ā€“855

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Laster DB, Gregory KE (1973) Factors influencing peri- and postnatal calf mortality. J Anim Sci 37:1092ā€“1097

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lewis D (1955) Amino-acid metabolism in the rumen of the sheep. Br J Nutr 9:215ā€“230

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lewis TR, Emery RS (1962) Metabolism of amino acids in the bovine rumen. J Dairy Sci 45:1487ā€“1492

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523ā€“542

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li XL, Bazer FW, Johnson GA, Burghardt RC, Frank JW, Dai ZL, Wang JJ, Wu ZL, Shinzato I, Wu G (2014) Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 46:375ā€“384

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Looney CR, Nelson JS, Schneider HJ, Forrest DW (2006) Improving fertility in beef cow recipients. Theriogenology 65:201ā€“209

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu G (2017) L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 49:957ā€“964

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ma QQ, Hu SD, Bannai M, Wu G (2018) L-Arginine regulates protein turnover in porcine mammary epithelial cells to enhance milk protein synthesis. Amino Acids 50:621ā€“628

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Macgregor CA, Sniffen CJ, Hoover WH (1978) Amino acid profiles of total and soluble protein in feedstuffs commonly fed to ruminants. J Dairy Sci 61:566ā€“573

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, Kim SW (2007) Dietary L-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652ā€“656

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mateo RD, Wu G, Moon HK, Carroll JA, Kim SW (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86:827ā€“835

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Maurer RR, Chenault JR (1983) Fertilization failure and embryonic mortality in parous and nonparous beef cattle. J Anim Sci 56:1183ā€“1189

    ArticleĀ  Google ScholarĀ 

  • McCoard S, Sales F, Wards N, Sciascia Q, Oliver M, Koolaard J, van der Linden D (2013) Parenteral administration of twin-bearing ewes with L-arginine enhances the birth weight and brown fat stores in sheep. Springerplus 2:684

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • McCoard S, Wards N, Koolaard J, Salerno MS (2014) The effect of maternal arginine supplementation on the development of the thermogenic program in the ovine fetus. Anim Prod Sci 54:1843ā€“1847

    ArticleĀ  CASĀ  Google ScholarĀ 

  • McCoard SA, Sales FA, Sciascia QL (2016) Amino acids in sheep production. Front Biosci (Elite Ed) 8:264ā€“288

    ArticleĀ  Google ScholarĀ 

  • McKnight SM, Simmons RM, Wu G, Satterfield MC (2020) Maternal arginine supplementation enhances thermogenesis in the newborn lamb. J Anim Sci 98:pii: skaa118

    ArticleĀ  Google ScholarĀ 

  • Merchen NR, Titgemeyer EC (1992) Manipulation of amino acid supply to the growing ruminant. J Anim Sci 70:3238ā€“3247

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Moraes JGN, Behura SK, Geary TW, Hansen PJ, Neibergs HL, Spencer TE (2018) Uterine influences on conceptus development in fertility-classified animals. Proc Natl Acad Sci U S A 115:E1749ā€“E1758

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mowat DN, Deelstra K (1972) Encapsulated methionine supplement for growing-finishing lambs. J Anim Sci 34:332ā€“335

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nimrick K, Hatfield EE, Kaminski J, Owens FN (1970) Qualitative assessment of supplemental amino acid need for growing lambs fed urea as sole nitrogen source. J Nutr 100:1293ā€“1300

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nocek JE, Russel JB (1988) Protein and energy as an integrated system ā€“ relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J Dairy Sci 71:2070ā€“2107

    ArticleĀ  CASĀ  Google ScholarĀ 

  • NRC (National Research Council) (1985) Nutrient requirements of sheep and goats. National Academy of Sciences National Research Council, Washington, DC

    Google ScholarĀ 

  • NRC (National Research Council) (2000) Nutrient requirements of beef cattle. National Academy of Sciences National Research Council, Washington, DC

    Google ScholarĀ 

  • NRC (National Research Council) (2001) Nutrient requirements of dairy animals. National Academy of Sciences National Research Council, Washington, DC

    Google ScholarĀ 

  • Overton TR, LaCount DW, Cicela TM, Clark JH (1996) Evaluation of ruminally protected methionine product for lactating dairy cows. J Dairy Sci 79:631ā€“638

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Overton TR, Emmert LS, Clark JH (1998) Effects of source of carbohydrate and protein and rumen-protected methionine on performance of cows. J Dairy Sci 81:221ā€“228

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Owens FN, Basalan M (2016) Ruminal fermentation. In: Millen DD, Arrigoni MDB, Pacheco RDL (eds) Rumenology. Springer, New York, pp 63ā€“102

    ChapterĀ  Google ScholarĀ 

  • Padunglerk A, Prasanpanich S, Kongmun P (2017) Use of monosodium glutamate by-product in cow diet on performance of lactating dairy cows. Anim Sci J 88:86ā€“93

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Papas AM, Sniffen CJ, Muscato TV (1984) Effectiveness of rumen-protected methionine for delivering methionine postruminally in dairy cows. J Dairy Sci 67:545ā€“552

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Parr RA, Cumming IA, Clark IJ (1982) Effects of maternal nutrition and plasma progesterone concentrations on survival and growth of the sheep embryo in early gestation. J Agric Sci 98:39ā€“46

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Patterson DJ, Bellows RA, Burfening PJ, Carr JB (1987) Occurrence of neonatal and postnatal mortality in range beef cattle. 1. Calf loss incidence from birth to weaning, backward and breech presentations and effects of calf loss on subsequent pregnancy rate of dams. Theriogenology 28:557ā€“571

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pisulewski PM, Rulquin H, Peyraud JL, Verite R (1996) Lactational and systemic responses of dairy cows to postruminal infusions of increasing amounts of methionine. J Dairy Sci 79:1781ā€“1791

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Putney DJ, Mullins S, Thatcher WW, Drost M, Gross TS (1989) Embryonic development in superovulated dairy cattle exposed to elevated ambient temperatures between the onset of estrus and insemination. Anim Reprod Sci 19:37ā€“51

    ArticleĀ  Google ScholarĀ 

  • Randel RD (1990) Nutrition and postpartum rebreeding in cattle. J Anim Sci 68:853ā€“862

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Reynolds LP, Borowicz PP, Caton JS, Crouse MS, Dahlen CR, Ward AK (2019) Developmental programming of fetal growth and development. Vet Clin North Am Food Anim Pract 35:229ā€“247

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Rhind SM, McMillen S, Wetherill GZ, McKelvey WAC, Gunn RG (1989) Effects of low levels of food intake before and/or after mating on gonadotropin and progesterone profiles in Greyface ewes. Anim Prod 49:267ā€“273

    CASĀ  Google ScholarĀ 

  • Richardson CR, Hatfield EE (1978) The limiting amino acid in growing cattle. J Anim Sci 46:740ā€“745

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Robinson JJ, Ashworth CJ, Rooke JA, Mitchell LM, McEvoy TG (2006) Nutrition and fertility in ruminant livestock. Anim Feed Sci Technol 126:259ā€“276

    ArticleĀ  Google ScholarĀ 

  • Roche JF, Boland MP, McGeady TA (1981) Reproductive wastage following artificial insemination in heifers. Vet Rec 109:401

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rode LM, Fujieda T, Sato H, Suzuki H, Chalupa W, Julien WE (1993) Milk production response in cows supplemented with rumen-protected amino acids. J Dairy Sci 76(Suppl 1):277

    Google ScholarĀ 

  • Saevre CB, Caton JS, Luther JS, Meyer AM, Dhuyvetter DV, Musser RE, Kirsch JD, Kapphahn M, Redmer DA, Schauer CS (2010) Effects of rumen-protected arginine supplementation on ewe serum amino acid concentration, circulating progesterone, and ovarian blood flow. Proc West Sect Am Soc Anim Sci 61:7ā€“10

    Google ScholarĀ 

  • Sales F, Sciascia Q, van der Linden DS, Wards NJ, Oliver MH, McCoard SA (2016) Intravenous maternal L-arginine administration to twin-bearing ewes, during late pregnancy, is associated with increased fetal muscle mTOR abundance and postnatal growth in twin female lambs. J Anim Sci 94:2519ā€“2531

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Santos JE, Thatcher WW, Chebel RC, Cerri RL, GalvĆ£o KN (2004) The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Anim Reprod Sci 82ā€“83:513ā€“535

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593ā€“1603

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489ā€“499

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Scheifinger C, Russel N, Chalupa W (1976) Degradation of amino acids by pure cultures of rumen bacteria. J Anim Sci 43:821ā€“827

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Schwab CG, Broderick GA (2017) A 100-year review: protein and amino acid nutrition in dairy cows. J Dairy Sci 100:10094ā€“10112

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Schwab CG, Satter LD, Clay AB (1976) Response of lactating dairy cows to abomasal infusion of amino acids. J Dairy Sci 59:1254ā€“1270

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sciascia QL, van der Linden DS, Sales FA, Wards NJ, Blair HT, Pacheco D, Oliver MH, McCoard SA (2019) Parenteral administration of L-arginine to twin-bearing Romney ewes during late pregnancy is associated with reduced milk somatic cell count during early lactation. J Dairy Sci 102:3071ā€“3081

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sok M, Ouellet DR, Firkins JL, Pellerin D, Lapierre H (2017) Amino acid composition of rumen bacteria and protozoa in cattle. J Diary Sci 100:5241ā€“5249

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Stalon V, Merceniner A (1984) L-Arginine utilization by Pseudomonas species. J Gen Microbiol 130:69ā€“76

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Stewart BM, Block J, Morelli P, Navarette AE, Amstalden M, Bonilla L, Hansen PJ, Bilby TR (2011) Efficacy of embryo transfer in lactating dairy cows during summer using fresh or vitrified embryos produced in vitro with sex-sorted semen. J Dairy Sci 94:3437ā€“3445

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Storm E, Ƙrskov ER (1984) The nutritive value of rumen micro-organisms in ruminants. 4. The limiting amino acids of microbial protein in growing sheep determined by a new approach. Br J Nutr 52:613ā€“620

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sun L, Zhang H, Wang Z, Fan Y, Guo Y, Wang F (2018) Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes. Reprod Fertil Dev 30:1116ā€“1127

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tedeschi LO, Fox DG (2016) The ruminant nutrition system. XanEdu, Acton

    Google ScholarĀ 

  • Thatcher WW, Macmillan KL, Hansen PJ, Bazer FW (1994) Embryonic losses: cause and prevention. In: Fields MJ, Sand RS (eds) Factors affecting calf crop. CRC Press, Boca Raton, pp 135ā€“153

    Google ScholarĀ 

  • Thatcher WW, Guzeloglu A, Mattos R, Binelli M, Hansen TR, Pru JK (2001) Uterine-conceptus interactions and reproductive failure in cattle. Theriogenology 56:1435ā€“1450

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Thureen PJ, Baron KA, Fennessey PV, Hay WW Jr (2002) Ovine placental and fetal arginine metabolism at normal and increased maternal plasma arginine concentrations. Pediatr Res 51:464ā€“471

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Torres-Moreno M, Meza-Herrera CA, GonzĆ”lez-Bulnes A, LĆ³pezMedrano JI, Mellado-Bosque M, Wurzinger M, Trejo-Calzada R (2009) Effect of exogenous glutamate supply on the onset of puberty in goats: I. Serum levels of insulin. Trop Subtrop Agroecosyst 11:193ā€“196

    Google ScholarĀ 

  • van der Linden DS, Sciascia Q, Sales F, Wards NJ, Oliver MH, McCoard SA (2015) Intravenous maternal arginine addition to twin-bearing ewes during late pregnancy enhances placental growth and development. J Anim Sci 93:4917ā€“4925

    Google ScholarĀ 

  • Van Soest PJ (1994) Nutritional Ecology of the Ruminant (2nd Ed.). Comstock Publishing Associates, Ithaca, NY

    Google ScholarĀ 

  • Varvikko T (1986) Microbially corrected amino acid composition of rumen-undegraded feed protein and amino acid degradability in the rumen of feeds enclosed in nylon bags. Br J Nutr 56:131ā€“140

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Veira DM, Prolux JG, Butler G, Fortin A (1988) Utilization of grass silage by cattle. Effect of barley and fish meal supplements. Can J Anim Sci 65:897ā€“903

    ArticleĀ  Google ScholarĀ 

  • Veira DM, Seone JR, Prolux JG (1991) Utilization of grass silage by growing cattle: effect of a supplement containing ruminally protected amino acids. J Anim Sci 69:4703ā€“4709

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vintanen AI (1966) Milk production of cows on protein-free feed. Science 153:1603ā€“1614

    ArticleĀ  Google ScholarĀ 

  • Von Kerserlingk MAG, Shelford JA, Puchala R, Swift ML, Fisher LJ (1998) In situ disappearance of amino acid from grass silages in the rumen and intestine of cattle. J Dairy Sci 81:140ā€“149

    ArticleĀ  Google ScholarĀ 

  • Wallace RJ, Chesson A (1995) Biotechnology in animal feeds and animal feeding. Wiley, New York

    BookĀ  Google ScholarĀ 

  • Watford M (2002) Net interorgan transport of L-glutamate in rats occurs via the plasma, not via erythrocytes. J Nutr 132:952ā€“956

    Google ScholarĀ 

  • Wettemann RP, Lents CA, Ciccioli NH, White FJ, Rubio I (2003) Nutritional- and suckling-mediated anovulation in beef cows. J Anim Sci 81(E Suppl 2):E48ā€“E59

    Google ScholarĀ 

  • Williams GL (1990) Suckling as a regulator of postpartum rebreeding in cattle: a review. J Anim Sci 68:831ā€“852

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    BookĀ  Google ScholarĀ 

  • Wu G (2018) Principles of animal nutriiton. CRC Press, Boca Raton

    Google ScholarĀ 

  • Wu G, Meininger CJ (2008) Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol 440:177ā€“189

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1ā€“17

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wu G, Bazer FW, Satterfield MC, Li XL, Wang XQ, Johnson GA, Burghardt RC, Dai ZL, Wang JJ, Wu ZL (2013) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241ā€“256

    Google ScholarĀ 

  • Wu G, Cross HR, Gehring KB, Savell JW, Arnold AN, McNeill SH (2016) Composition of free and peptide-bound amino acids in beef chuck, loin, and round cuts. J Anim Sci 94:2603ā€“261

    Google ScholarĀ 

  • Wu G, Bazer FW, Johnson GA, Herring C, Seo H, Dai ZL, Wang JJ, Wu ZL, Wang ZL (2017) Functional amino acids in the development of the pig placenta. Mol Reprod Dev 84:879ā€“882

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wu G, Bazer FW, Johnson GA, Hou YQ (2018) Arginine nutrition and metabolism in growing, gestating and lactating swine. J Anim Sci 96:5035ā€“5051

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wu G, Bazer FW, Lamb GC (2020) Introduction: significance, challenges and strategies of animal production. In: Bazer FW, Lamb GC, Wu G (eds) Animal agriculture: challenges, innovations, and sustainability. Elsevier, New York, pp 1ā€“20

    Google ScholarĀ 

  • Zeng X, Wang F, Fan X, Yang W, Zhou B, Li P, Yin Y, Wu G, Wang J (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421ā€“1425

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang H, Sun LW, Wang ZY, Deng MT, Zhang GM, Guo RH, Ma TW, Wang F (2016) Dietary N-carbamylglutamate and rumen-protected L-arginine supplementation ameliorate fetal growth restriction in undernourished ewes. J Anim Sci 94:2072ā€“2085

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

This work was supported by the Texas A&M AgriLife Research Beef Program and the Department of Animal Science Mini-Grant Program. We thank Wenliang He for assistance in the preparation of figures, as well as our colleagues, research assistants, and students for helpĀ and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilbreath, K.R., Bazer, F.W., Satterfield, M.C., Wu, G. (2021). Amino Acid Nutrition and Reproductive Performance in Ruminants. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-54462-1_4

Download citation

Publish with us

Policies and ethics