Skip to main content

Microbial Biocontrol Agents for Agricultural Soil Remediation: Prospects and Application

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

  • 553 Accesses

Abstract

Soil pollution is rampant in recent years, attributed mainly to various anthropogenic activities. The pollutants, organic or inorganic in nature, reside in the soils and accumulate to levels exceeding permissible safe levels, posing hazards to living organisms. As a result, soils can harbour various pollutants such as polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (chlorinated and brominated aromatic substances, organochlorine-based pesticides, and dioxins), heavy metals, and metalloids. And often, soils that are heavily contaminated are agricultural soils due to the extensive use of fertilizer and pesticides resulting in residual accumulation of heavy metals, PAHs, and dichlorodiphenyltrichloroethane. Conventional approaches to soil remediation include physicochemical means that is costly, laborious, and non-sustainable. In response, biological means is sought as an alternative due to its environmental-friendly, better sustainability, and cost-effective traits. The biological remediation utilizes plants (phytoremediation) or the typical soil microflora (microbial remediation). In this chapter, the alternative of exploring microbial biocontrol agents for soil remediation is proposed. Microbial biocontrol agents are often introduced into the soil to suppress disease development or to enhance growth of plants. They are introduced into various agricultural soils which may harbour pollutants. Biocontrol agents have metal-chelating and nutrient-solubilizing properties. This is further escalated by the discovery of metal-tolerant species as biocontrol agents. As such, this approach promotes the use of biocontrol agents as bioremediation agents as well, to manage disease and bioremediate soils at the same time. This chapter will describe microbial biocontrol agents and their potential, mechanisms, and applications for the remediation of polluted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas SH, Ismail IM, Mostafa TM et al (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3:74–102

    Google Scholar 

  • Abbasi A, Sajid A, Haq N et al (2014) Agricultural pollution: an emerging issue. In: Ahmad P, Wani M, Azooz M et al (eds) Improvement of crops in the era of climatic changes. Springer, New York, pp 347–387

    Chapter  Google Scholar 

  • Abhilash PC, Powell JR, Sing HB et al (2012) Plant-microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  PubMed  Google Scholar 

  • Abo-amer AE, Abu-Gharbia MA, Soltan EM et al (2014) Isolation and molecular characterization of heavy metal-resistant Azotobacter chroococcum from agricultural soil and their potential application in bioremediation. Geomicrobiol J 31:551–561

    Article  CAS  Google Scholar 

  • Ahemad M, Malik A (2012) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2:12–21

    Article  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Zafar S, Ahmad F (2005) Heavy metal biosorption potential of Aspergillus and Rhizopus sp. isolated from wastewater treated soil. J Appl Sci Environ Mgt 9:123–126

    Google Scholar 

  • Aka RJN, Babalola OO (2016) Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes faecalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int J Phytoremediation 18:200–209

    Article  CAS  Google Scholar 

  • Ali H, Khan E (2018) Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs – concepts and implications for wildlife and human health. Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2018.1469398

  • Alves LR, Reis ARD, Gratão PL (2016) Heavy metals in agricultural soils: from plants to our daily life. Cientifica 44:346–361

    Article  Google Scholar 

  • Aragón F, Rud JP (2016) Polluting industries and agricultural productivity: evidence from mining in Ghana. Econ J 126:1980–2011

    Article  Google Scholar 

  • Awasthi SK (1998) Prevention of food adulteration act No 37 of 1954. Central and state rules as amended for 1999. Ashoka Law House

    Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques – classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180

    Google Scholar 

  • Babu AG, Shim J, Bang KS et al (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242

    Google Scholar 

  • Barbieri M, Sappa G, Nigro A (2018) Soil pollution: anthropogenic versus geogenic contributions over large areas of the Lazio region. J Geochem Explor 195:78–86

    Article  CAS  Google Scholar 

  • BBSRC (1999) A joint research council review of bioremediation research in the United Kingdom. BBRRC, EPSRC, and NERC, Swindon, UK, p 55

    Google Scholar 

  • Behera BK, Prasad R (2020) Strategies for soil management. In: Behera BK, Prasad R (eds) Environmental Technology and Sustainability. Elsevier 143–167

    Google Scholar 

  • Blindauer CA (2011) Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16:1011–1024

    Article  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Yin L, Zhang D, Wang Y, Yuan J, Zhu Y, Dou J (2017) Contamination, sources, and health risks associated with soil PAHs in rebuilt land from a coking plant, Beijing, China. Int J Environ Res Public Health 16:670

    Article  CAS  Google Scholar 

  • Carlot M, Giacomini A, Casella S (2002) Aspects of plant-microbe interactions in heavy metal polluted soil. Acta Biotechnol 22:13–20

    Article  CAS  Google Scholar 

  • Chaney RL, Oliver DP (1996) Sources, potential adverse effects and remediation of agricultural soil contaminants. In: Naidu R, Kookana RS, Oliver DP et al (eds) Contaminants and the soil environment in the Australasia-Pacific region. Springer, Dordrecht, pp 323–359

    Chapter  Google Scholar 

  • Chen Z, Su S, Guo H et al (2007) New aspects of collaborative research on soil pollution, food safety, and soil remediation techniques in Asia. Technical Bull No. 175. Food and Fertilizer Technology Center (FFTC), Taipei, Taiwan, pp 1–35

    Google Scholar 

  • Chen R, de Sherbinin A, Ye C et al (2014) China’s soil pollution: farms on the frontline. Science 344:691

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Zhou Z, Liu Y et al (2015) Mycoremediation potential and tolerance responses of Oudemansiella radicata in cadmium-pyrene co-contaminated soil. J Soils Sediments 15:1083–1093

    Article  CAS  Google Scholar 

  • Chiroma TM, Ebewele RO, Hymore K (2014) Comparative assessment of heavy metal levels in soil, vegetables, and urban grey waste water used for irrigation in Yola and Kano. Int Ref J Eng Sci 3:1–9

    Google Scholar 

  • Choudhary M, Kumar R, Datta A et al (2017) Bioremediation of heavy metals by microbes. In: Arora S, Singh A, Singh Y (eds) Bioremediation of salt affected soils: an Indian perspective. Springer, Cham, pp 233–255

    Chapter  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Cocârţă DM, Stoian MA, Karademir A (2017) Crude oil contaminated sites: evaluation by using risk assessment approach. Sustainability 9:1365

    Article  CAS  Google Scholar 

  • Coelho LM, Rezende HC, Coelho LM et al (2015) Bioremediation of polluted waters using microorganisms. In: Shiomi N (ed) Advances in bioremediation of wastewater and polluted soil. IntechOpen, London, UK, pp 1–22

    Google Scholar 

  • Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes-Penagos C, Olmedo-Monfil V, Herrera-Estrella A (2007) The nature of fungal mycoparasitic biocontrol agents. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. Haworth Press, New York, pp 327–353

    Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals – an overview. Indian J Biotechnol 7:159–169

    Google Scholar 

  • Das A, Sherameti I, Varma A (2012) Contaminated soil: physical, chemical, and biological components. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils. Springer-Verlag, Heidelberg, Berlin, pp 1–15

    Google Scholar 

  • Das S, Jean J, Kar S et al (2014) Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. J Hazard Mater 272:112–120

    Article  CAS  PubMed  Google Scholar 

  • Deketelaere S, Tyvaert L, Franca SC et al (2017) Desirable traits of a good biocontrol agent against Verticillium wilt. Front Microbiol 8:1186

    Article  PubMed  PubMed Central  Google Scholar 

  • Dich J, Zahm SH, Hanberg A, Adami H-O (1997) Pesticides and cancer. Cancer Causes Control 8:420–443

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Wasiullah MD et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  Google Scholar 

  • DPR-EGASPIN (2003) Environmental guidelines and standards for the petroleum industry in Nigeria (EGASPIN). Department of Petroleum Resources, Lagos, Nigeria

    Google Scholar 

  • Elliott M (2003) Biological pollutants and biological pollution – an increasing cause for concern. Mar Pollut Bull 46:275–280

    Google Scholar 

  • El-Shahawi MS, Hamza A, Bashammakhb AS, Al-Saggaf WT (2010) An overview on the accumulation, distribution, transformation, toxicity, and analytical methods for the monitoring of persistent organic pollutants. Talanta 80:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F et al (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1–18

    Article  Google Scholar 

  • Emenike CU, Jayanthi B, Agamuthu P et al (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26:156–168

    Article  CAS  Google Scholar 

  • Environmental Protection Ministry of China (EPMC) (2015) Standards of soil environmental quality of agricultural land. Environmental Protection of Ministry of China, Beijing, China

    Google Scholar 

  • European Union (2002) Heavy metals in wastes, European Commission on Environment. http://ec.europa.eu/environment/waste/studies/pdf/heavy_metalsreport.pdf. Accessed on 15 May 2019

  • Ezzi M, Lynch JM (2002) Cyanide catabolizing enzymes in Trichoderma spp. Enzyme Microb Technol 31:1042–1047

    Article  CAS  Google Scholar 

  • FAO/WHO (2001) Codex alimentarius commission, food additives and contamination, Joint FAO/WHO Food standard program, p 289

    Google Scholar 

  • FAOSTAT (2018) FAOSTAT Inputs/Annual population. [online]. Cited 9 May 2019. http://www.fao.org/faostat/en/#data/OA

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  • Franke S, Grass G, Rensing C et al (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gadd GM (1990) Fungi and yeasts for metal binding. In: Ehrlich H, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 249–275

    Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical process. Adv Microb Physiol 11:47–91

    Article  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gall JE, Rajakaruna N (2013) The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In: Lang M (ed) Brassica: characterization, functional genomics and health benefits. Nova, New York, pp 121–148

    Google Scholar 

  • Garbisu C, Alkorta I (1997) Bioremediation: principles and future. J Clean Technol Environ Occup Med 6:1–16

    Google Scholar 

  • Gascon M, Morales D, Sunyer J et al (2013) Effects of persistent organic pollutants on the developing respiratory and immune systems: a systematic review. Environ Int 52:51–65

    Article  CAS  PubMed  Google Scholar 

  • Gkorezis P, Daghio M, Franzetti A et al (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836

    Article  PubMed  PubMed Central  Google Scholar 

  • Gnanamanickam SS, Vasudevan P, Reddy MS et al (2002) Principles of biological control. In: Gnanamanickam SS (ed) Biological control of crop diseases. Marcel Dekker, New York, pp 1–9

    Chapter  Google Scholar 

  • Griffin MR (2014) Biocontrol and bioremediation: two areas of endophytic research which hold great promise. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, India, pp 257–282

    Chapter  Google Scholar 

  • Gupta R, Ahuja P, Khan S et al (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78:967–973

    CAS  Google Scholar 

  • Hafez EE, Elbesawy E (2009) Molecular characterization of soil microorganisms: effect of industrial pollution on distribution and biodiversity. World J Microbiol Biotechnol 25:215–224

    Article  CAS  Google Scholar 

  • Halaouli S, Asther M, Sigoillot JC et al (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100:219–232

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Lorito M, Lynch JM (2004) Uses of Trichoderma spp. to alleviate soil or water pollution. Adv Appl Microbiol 56:313–330

    Article  CAS  PubMed  Google Scholar 

  • He Z, Shentu J, Yang X et al (2015) Heavy metal contamination of soils: sources, indicators, and assessment. J Environ Indic 9:17–18

    Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna M et al (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897

    Article  CAS  PubMed  Google Scholar 

  • Hookoom M, Puchooa D (2013) Isolation and identification of heavy metals tolerant bacteria from industrial and agricultural areas in Mauritius. Curr Res Microbiol Biotechnol 1:119–123

    Google Scholar 

  • Hrynkiewicz K, Złoch M, Kowalkowski T et al (2018) Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Environ Rev 26:316–332

    Article  CAS  Google Scholar 

  • Iram S, Ahmad I, Stuben D (2009) Analysis of mines and contaminated agricultural soil samples for fungal diversity and tolerance to heavy metals. Pak J Bot 41:885–895

    CAS  Google Scholar 

  • Iram S, Parveen K, Usman J et al (2012) Heavy metal tolerance of filamentous fungal strains isolated from soil irrigated with industrial wastewater. Biologija 58:107–116

    Article  CAS  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2,4-D contaminated soil. Plant Soil 189:139–144

    Article  CAS  Google Scholar 

  • Jin Y, Luan Y, Ning Y et al (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci 8:1336

    Article  CAS  Google Scholar 

  • Jones KC, de Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–221

    Article  CAS  PubMed  Google Scholar 

  • Kelepertzis E (2014) Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma 221–222:82–90

    Article  CAS  Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD et al (2007) Food web – specific biomagnification of persistent organic pollutants. Science 317:236

    Google Scholar 

  • Khalid S, Shahid M, Niazi NK et al (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA et al (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Khanif YM, Salmijah S (1996) Contaminants and the soil environment in Malaysia. In: Naidu R, Kookana RS, Oliver DP et al (eds) Contaminants and the soil environment in the Australasia-Pacific region. Springer, Netherlands, pp 563–578

    Chapter  Google Scholar 

  • Knox AS, Seamans JC, Mench MJ et al (2000) Remediation of metals and radionuclides. Contaminated soil using in situ stabilization techniques. Macmillan, New York, pp 21–26

    Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895

    Article  Google Scholar 

  • Leila B, Nabti E, Tabli N et al (2016) Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur J Soil Biol 75:38–46

    Google Scholar 

  • Leon J, Osorio N (2014) Role of litter turnover in soil quality in tropical degraded lands of Colombia. Sci World J 13:1–11

    Google Scholar 

  • Li GY, Hu N, Ding DX et al (2011) Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium, and lead contaminated soil from uranium mill tailings repository in South China. Bull Environ Contam Toxicol 86:646–652

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu Y, Lin S, Liu Y, Xie Y (2019) Soil pollution management in China: a brief introduction. Sustainability 11:1–15

    Google Scholar 

  • Lim MW, Von Lau E, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil – present works and future directions. Mar Pollut Bull 109:14–45

    Google Scholar 

  • Liu XB, Zhang XY, Wang XY et al (2010) Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ 56:87–97

    Article  CAS  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation – prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221

    Google Scholar 

  • Ma Z, Jacobsen FE, Giedroc DP (2009) Metal transporters and metal sensors: how coordination chemistry controls bacterial metal homeostasis. Chem Rev 109:4644–4681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT (2000) Bacterial habitats in extreme environments. In: Seckbach J (ed) Journey to diverse microbial worlds. Cellular origin and life in extreme habitats, vol 2. Springer, Dordrecht, pp 61–72

    Chapter  Google Scholar 

  • Malla MA, Dubey A, Yadav S et al (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9:1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallampati SR, Mitoma Y, Okuda T, Simion C, Lee BK (2015) Dynamic immobilization of simulated radionuclide 133 Cs in soil by thermal treatment/vitrification with nanometallic Ca/CaO composites. J Environ Radioact 139:118–124

    Article  CAS  PubMed  Google Scholar 

  • Manz M, Wenzel KD, Dietze G et al (2001) Persistent organic pollutants in agricultural soils of Central Germany. Sci Total Environ 277:187–198

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Han FX, Shao X et al (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicol Environ Saf 125:16–24

    Article  CAS  PubMed  Google Scholar 

  • Marinescu M, Toti M, Tanase V et al (2010) An assessment of the effects of crude oil pollution on soil properties. Annu Food Sci Technol 11:94–99

    CAS  Google Scholar 

  • Masindi V, Muedi KL (2016) Environmental contamination by heavy metals. In: Larramendy M, Soloneski S (eds) Environmental health risk: hazardous factors to living species. IntechOpen, London, UK, pp 115–133

    Google Scholar 

  • Masindi V, Muedi KL (2018) Environmental Contamination by Heavy Metals. In Heavy Metals; IntechOpen: Aglan, France, pp. 115–133

    Google Scholar 

  • Megharaj M, Naidu R (2017) Soil and brownfield bioremediation. Microb Biotechnol 10:1244–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirsal IA (2008) Soil pollution: origin, monitoring and remediation. Springer, Berlin, Heidelberg, 312 p

    Google Scholar 

  • Mishra GK (2017) Microbes in heavy metal remediation: a review on current trends and patents. Recent Pat Biotechnol 11:188–196

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbial 8:1706

    Google Scholar 

  • Mishra V, Gupta A, Kaur P et al (2016) Synergistic effects of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremediation 18:697–703

    Article  CAS  PubMed  Google Scholar 

  • Montanarella L, Pennock DJ, McKenzie N et al (2016) World’s soils are under threat. Soil 2:79–82

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012) Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possess metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol Environ Saf 79:129–133

    Article  CAS  PubMed  Google Scholar 

  • Nanda S, Abraham J (2011) Impact of heavy metals on the rhizosphere microflora of Jatropha multifida and their effective remediation. Afr J Biotechnol 10:11948–11955

    CAS  Google Scholar 

  • Neilson S, Rajakaruna N (2015) Phytoremediation of agricultural soils: using plants to clean metal-contaminated arable land. In: Ansari AA, Gill SS, Gill R et al (eds) Phytoremediation: management of environmental contaminants. Springer International, Switzerland, pp 159–168

    Chapter  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Norse D, Ju X (2015) Environmental costs of China’s food security. Agric Ecosyst Environ 209:5–14

    Article  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    Article  PubMed Central  CAS  Google Scholar 

  • Padilla-Sánchez JA, Romero-González R, Plaza-Bolaños P et al (2014) Residues and organic contaminants in agricultural soils in intensive agricultural areas of Spain: a three years survey. CLEAN-Soil Air Water 43:746–753

    Article  CAS  Google Scholar 

  • Pain B, Jarvis S, Clements B (1991) Impact of agricultural practices on soil pollution. Outlook Agric 20:153–160

    Article  Google Scholar 

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. The Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02

  • Peralta-Videa JR, Lopez ML, Narayana M et al (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  CAS  PubMed  Google Scholar 

  • Petruzzelli G, Gorini F, Pezzarossa B, Pedron F (2010) The fate of pollutants in soil. In: Fabrizio B, Liliana C, Pier FM (eds) Environmental health interdepartment project. Consglio Nazionale delle Ricerche, Rome, pp 1–31

    Google Scholar 

  • Phieler R, Voit A, Kothe E (2013) Microbially supported phytoremediation of heavy metal contaminated soils: strategies and application. Adv Biochem Eng Biotechnol 141:211–235

    Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer International Publishing (ISBN 978-3-319-68957-9). https://link.springer.com/book/10.1007/978-3-319-68957-9

  • Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer International Publishing (ISBN 978-3-319-77386-5). https://www.springer.com/us/book/9783319773858

  • Prasad R, Aranda E (2018) Approaches in bioremediation: the new era of environmental microbiology and nanobiotechnology. Springer International Publishing (978-3-030-02369-0) https://www.springer.com/gp/book/9783030023683

  • Prasad M, de Oliveira Freistas H (2003) Metal hyperaccumulation in plants – biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:617

    Google Scholar 

  • Purohit J, Chattopadhyay A, Biswas MK et al (2018) Mycoremediation of agricultural soil: bioprospection for sustainable development. In: Prasad R (ed) Mycoremediation and environmental sustainability: fungal biology. Springer, Cham, pp 91–120

    Chapter  Google Scholar 

  • Ramesh A, Archibong AE (2011) Reproductive toxicity of polycyclic aromatic hydrocarbons: occupational relevance. In: Gupta RC (ed) Reproductive and developmental toxicology. Academic Press, San Diego, CA, pp 577–591

    Chapter  Google Scholar 

  • Rampelotto PH (2013) Extremophiles and extreme environments. Life (Basel) 3:482–485

    Google Scholar 

  • Rawat R, Tewari L (2011) Effect of abiotic stress on phosphate solubilization by biocontrol fungus Trichoderma sp. Curr Microbiol 62:1521–1526

    Article  CAS  PubMed  Google Scholar 

  • Rensing C, Ghosh M, Rosen BR (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhind SM (2009) Anthropogenic pollutants: a threat to ecosystem sustainability? Philos Trans R Soc 364:3391–3401

    Article  CAS  Google Scholar 

  • Rodríguez-Eugenio N, McLaughlin M, Pennock D (2018) Soil pollution: a hidden reality. FAO, Rome, 142 p

    Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR et al (2015) Phytoremediation. In: Hakeem K, Sabir M, Ozturk M et al (eds) Soil remediation and plants: prospects and challenges, contaminated soil is indispensable. Elsevier, Boston, pp 85–105

    Chapter  Google Scholar 

  • Saha R, Saha N, Donofrio RS et al (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317

    Article  PubMed  Google Scholar 

  • Saha N, Rahman MS, Ahmed MB et al (2017) Industrial metal pollution in water and probabilistic assessment of human health risk. J Environ Manag 185:70–78

    Google Scholar 

  • Salomons W, Forstner U, Mader P (1995) Heavy metals: problems and solutions. Springer-Verlag, Berlin, Germany, 414 pp

    Google Scholar 

  • Sambandan K, Kannan K, Raman N (1992) Distribution of vesicular-arbuscular mycorrhizal fungi in heavy metal polluted soils of Tamil Nadu, India. J Environ Biol 13:159–167

    CAS  Google Scholar 

  • Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-à-vis organophosphorus fungicide. Indian J Microbiol 51:266–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Egidi E, Isola D et al (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosys 147:237–246

    Article  Google Scholar 

  • Sarma H, Forid N, Prasad R, Prasad MNV, Ma LQ, Rinklebe J (2021) Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR–Cas9 technology. Journal of Hazardous Materials https://doi.org/10.1016/j.jhazmat.2021.125493

  • Sim CSF, Ting ASY (2017) Metal biosorption in single- and multi-metal solutions by biosorbents: indicators of efficacy in natural wastewater. Clean Soil Air Water 45:1600049

    Article  CAS  Google Scholar 

  • Sim CSF, Cheow YL, Ng SL, Ting ASY (2018) Discovering metal-tolerant endophytic fungi from the phytoremediator plant Phragmites. Water Air Soil Pollut 229:68

    Article  CAS  Google Scholar 

  • Sim CSF, Chen SH, Ting ASY (2019a) Endophytes: emerging tools for the bioremediation of pollutants. In: Bharagava RN, Chowdhary P (eds) Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 189–217

    Chapter  Google Scholar 

  • Sim CSF, Cheow YL, Ng SL, Ting ASY (2019b) Antifungal activities of metal-tolerant endophytes against Ganoderma boninense under the influence of metal stress. Biol Control 130:9–17

    Article  CAS  Google Scholar 

  • Sim CSF, Cheow YL, Ng SL, Ting ASY (2019c) Biocontrol activities of metal-tolerant endophytes against Ganoderma boninense in oil palm seedlings cultivated under metal stress. Biol Control 132:66–71

    Article  CAS  Google Scholar 

  • Singh M, Srivastava PK, Verma PC et al (2015a) Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119:1278–1290

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Shelke GM, Jha PN (2015b) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937

    PubMed  PubMed Central  Google Scholar 

  • Singh PC, Srivastava S, Shukla D et al (2018) Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In: Prasad R (ed) Mycoremediation and environmental sustainability: fungal biology. Springer, Cham, pp 351–380

    Chapter  Google Scholar 

  • Siripornadulsil S, Siripornadulsil W (2013) Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol Environ Saf 94:94–103

    Article  CAS  PubMed  Google Scholar 

  • Song B, Zeng G, Gong J et al (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S et al (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    Article  CAS  PubMed  Google Scholar 

  • Su C, Jiang L, Zhang W (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skep Crit 3:24–38

    Google Scholar 

  • Sun J, Pan L, Tsang DCW et al (2018) Organic contamination and remediation in the agricultural soils of China: a critical review. Sci Total Environ 615:724–740

    Article  CAS  PubMed  Google Scholar 

  • Taiwan Environment Protection Agency (TEPA) (2000) Soil and groundwater pollution and remediation. Available: http://sgw.epa.gov.tw/public/En/index.htm. Accessed on: 15 May 2019

  • Taj ZZ, Rajkumar M (2016) Perspectives of Plant Growth-Promoting Actinomycetes in Heavy Metal Phytoremediation. In: Subramaniam G., Arumugam S., Rajendran V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore

    Google Scholar 

  • Tajudin SAA, Azmi MAM, Nabila ATA (2016) Stabilization/solidification remediation method for contaminated soil: a review. IOP Conf Ser Mater Sci Eng 136:012043

    Article  Google Scholar 

  • Tejada M, García C, Hernández T et al (2015) Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide. Arch Environ Contam Toxicol 69:8–19

    Article  CAS  PubMed  Google Scholar 

  • Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R (2021) Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Current Research in Biotechnology https://doi.org/10.1016/j.crbiot.2021.02.004

  • Ting ASY, Jioe E (2016) In vitro assessment of antifungal activities of antagonistic fungi towards pathogenic Ganoderma boninense under metal stress. Biol Control 96:57–63

    Article  CAS  Google Scholar 

  • Tripathi P, Singh P, Mishra A et al (2013) Trichoderma: a potential bioremediatory for environmental clean up. Clean Techn Environ Policy 15:541–550

    Article  CAS  Google Scholar 

  • Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ion from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115:203–211

    Article  CAS  Google Scholar 

  • Van den Berg R (1995) Human exposure to soil contamination: a qualitative and quantitative analysis towards proposals for human toxicological intervention values. RIVM Report No. 725201011. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands

    Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD et al (2012) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:1–16

    Google Scholar 

  • Varma A, Prasad R, Tuteja N (2017) Mycorrhiza: nutrient uptake, biocontrol, ecorestoration. Springer International Publishing (ISBN: 978-3-319-68867-1). http://www.springer.com/us/book/9783319688664

  • Vivas A, Azcón R, Biró B et al (2003) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49:577–588

    Article  CAS  PubMed  Google Scholar 

  • Waigi MG, Sun K, Gao Y (2017) Sphingomonads in microbe-assisted phytoremediation: tackling soil pollution. Trends Biotechnol 35:883–899

    Article  CAS  Google Scholar 

  • Wasim Aktar M, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wong MH (2012) Environmental contamination: health risks and ecological restoration. Taylor and Francis Group, USA, 518 p

    Google Scholar 

  • Wu CH, Bernard SM, Andersen GL et al (2009) Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Li Z, Lu X et al (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  PubMed  Google Scholar 

  • Ye S, Zeng G, Wu H et al (2017) Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 37:1062–1076

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wu J (2018) The sustainability of agricultural development in China: the agriculture-environment nexus. Sustainability 10:1776

    Article  Google Scholar 

  • Zafra G, Cortés-Espinosa DV (2015) Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review. Environ Sci Pollut Res Int 22:19426–19433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

GYK would like to thank Monash University Malaysia for the scholarship provided to support his study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Su Yien Ting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goh, Y.K., Ting, A.S.Y. (2021). Microbial Biocontrol Agents for Agricultural Soil Remediation: Prospects and Application. In: Prasad, R., Nayak, S.C., Kharwar, R.N., Dubey, N.K. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-54422-5_10

Download citation

Publish with us

Policies and ethics