Skip to main content

Fungal Ministrations in Soil Detoxification, Building, and Health Restoration

  • Chapter
  • First Online:
Fungi and Fungal Products in Human Welfare and Biotechnology

Abstract

Soil health refers to its function as a living ecosystem. Food demand for the growing population necessitates boosting of crop productivity. Soil health and crop productivity are closely linked. Various chemicals are often added to the soil at higher doses in an effort to increase productivity, which in the long term deteriorates soil quality. The quality of soil is determined by the availability of essential nutrients. Healthy soil is vital for vibrant microbial diversity. An extensive range of microbes live in soil, which have a participatory contribution in modulating soil properties. The primary role of fungi in the soil ecosystem is decomposition, breakdown of complex substances, plant growth promotion, and biocontrol. Fungi have been extensively studied at pilot and field scale. Employing fungi for biocontrol is also a well-researched area and has a good representation of products in the market. The fungal role in plant growth promotion is relatively an emerging area. This chapter focuses on the role of fungi in defining various functions that impact soil quality. A detailed analysis of the assimilatory actions, dissimilatory reactions, remediatory roles, ecosystem, and regulatory functions of fungi has been discussed. The primary role of fungi is in the soil ecosystem. Additionally, this chapter provides information on commercial products derived from fungi that enhance soil health by way of nutrient acquisition, biocontrol, and bioremediation. The chapter also briefly describes the approaches through which fungi aid in restoring soil health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hao J, Ashley K (2021) Irreplaceable role of amendment-based strategies to enhance soil health and disease suppression in potato production. Microorganisms 9:1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tahat M, Alananbeh M, Othman KA, Leskovar I (2020) Soil health and sustainable agriculture. Sustainability 12(12):4859

    Article  CAS  Google Scholar 

  3. Harman G, Khadka R, Doni F, Uphoff N (2021) Benefits to plant health and productivity from enhancing plant microbial symbionts. Front Plant Sci 11:610065

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li J, Meng B, Chai H, Yang X, Song W, Li S, Lu A, Zhang T, Sun W (2019) Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front Plant Sci 10:499

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tarin MWK, Fan L, Xie D, Tayyab M, Rong J, Chen L, Muneer MA, Zheng Y (2021) Response of soil fungal diversity and community composition to varying levels of bamboo biochar in red soils. Microorganisms 9(7):1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37(1):1–16

    Article  Google Scholar 

  7. Jiménez-González MA, De la Rosa JM, Jiménez-Morillo NT, Almendros G, González-Pérez JA, Knicker H (2016) Post-fire recovery of soil organic matter in a Cambisol from typical Mediterranean forest in southwestern Spain. Sci Total Environ 572:1414–1421

    Article  PubMed  Google Scholar 

  8. Mubekaphi C (2019) Soil organic carbon, glomalin related soil protein and related physical properties after 15 years of different management practices in a subtropical region of South Africa (doctoral thesis). University of KwaZulu-Natal, Pietermaritzburg, South Africa

    Google Scholar 

  9. Dellagi A, Quillere I, Hirel B (2020) Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition. J Exp Bot 71(15):4469–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li JT, Lu JL, Wang HY, Fang Z, Wang XJ, Feng SW, Liang JL (2021) A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol Rev 96(6):2771–2793

    Article  CAS  PubMed  Google Scholar 

  11. Gautam AK & Avasthi S (2019) Fungal endophytes: potential biocontrol agents in agriculture. In Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology, Woodhead Publishing, pp. 241–283

    Google Scholar 

  12. Ali WA, Hussein RH, Radef WT (2021) The effect of soil properties on the biological diversity of fungi in soil University of Anbar. In J Physics: Conference Series 2114(1):012068

    Google Scholar 

  13. FAO & ITPS (2015). Status of the World’s soil resources (SWSR)—Main report. Food and agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy

    Google Scholar 

  14. Menta C (2012) Soil fauna diversity-function, soil degradation, biological indices, soil restoration. Biodiversity conservation and utilization in a diverse world. In Biodiversity conservation and utilization in a diverse world (eds. Gbolagade Lameed), London. pp. 59–94

    Google Scholar 

  15. Phogat VK, Tomar VS & Dahiya RI (2015) Soil physical properties. Soil science: An introduction pp.135–171

    Google Scholar 

  16. Rosas-Medina M, Maciá-Vicente JG, Piepenbring M (2020) Diversity of fungi in soils with different degrees of degradation in Germany and Panama. Mycobiology 48(1):20–28

    Article  PubMed  Google Scholar 

  17. Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75(6):1589–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jayaswal K, Sahu V & Gurjar BR (2018). Water pollution, human health and remediation. In Water remediation. Springer, Singapore, pp. 11–27

    Google Scholar 

  19. Bisht N & Chauhan PS (2020) Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. In Soil Contamination-Threats and Sustainable Solutions. IntechOpen

    Google Scholar 

  20. Norton JM, Pellegrino E, Gamper HA, Ciccolini V, Ercoli L (2020) Forage rotations conserve diversity of arbuscular mycorrhizal fungi and soil fertility. Front Microbiol 10:2969

    Article  Google Scholar 

  21. Fall AF, Nakabonge G, Ssekandi J, Founoune-Mboup H, Apori SO, Ndiaye A, Badji A, Ngom K (2022) Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil. Front Fungal Biol 3:723892

    Article  Google Scholar 

  22. Frac M, Hannula SE, Bełka M, Jedryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9:707

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lehmann A, Zheng W, Ryo M, Soutschek K, Roy J, Rongstock R, Maaß S, Rillig MC (2020) Fungal traits important for soil aggregation. Front Microbiol 10:2904

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12(5):452–461

    Article  PubMed  Google Scholar 

  25. Zhu C, Ling N, Guo J, Wang M, Guo S, Shen Q (2016) Impacts of fertilization regimes on arbuscular mycorrhizal fungal (AMF) community composition were correlated with organic matter composition in maize rhizosphere soil. Front Microbiol 7:1840

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210(3):1022–1032

    Article  CAS  PubMed  Google Scholar 

  27. Jansa J, Forczek ST, Rozmoš M, Püschel D, Bukovská P, Hršelová H (2019) Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions. Chem Biol Technol Agric 6(1):1–10

    Article  Google Scholar 

  28. Xu J, Liu S, Song S, Guo H, Tang J, Yong JW, Ma Y, Chen X (2018) Arbuscular mycorrhizal fungi influence decomposition and the associated soil microbial community under different soil phosphorus availability. Soil Biol Biochem 120:181–190

    Article  CAS  Google Scholar 

  29. Zhang L, Shi N, Fan J, Wang F, George TS, Feng G (2018) Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions. Environ Microbiol 7:2639–2651

    Article  Google Scholar 

  30. Zhu J, Li M, Whelan M (2018) Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ 612:522–537

    Article  CAS  PubMed  Google Scholar 

  31. Rodrigues M, Withers PJA, Soltangheisi A, Vargas V, Holzschuh M, Pavinato PS (2021) Tillage systems and cover crops affecting soil phosphorus bioavailability in Brazilian Cerrado Oxisols. Soil Till Res 205:104770

    Article  Google Scholar 

  32. Choudhary M, Sharma PC, Jat HS, McDonald A, Jat ML, Choudhary S, Garg N (2018) Soil biological properties and fungal diversity under conservation agriculture in Indo-Gangetic Plains of India. J Plant Nutr Soil Sci 18(4):1142–1156

    CAS  Google Scholar 

  33. Kour D, Rana KL, Kaur T, Yadav N, Halder SK, Yadav AN et al (2020) Potassium solubilizing and mobilizing microbes: biodiversity, mechanisms of solubilization, and biotechnological implication for alleviations of abiotic stress. In: Rastegari AA, Yadav AN, Yadav N (eds) New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp 177–202

    Chapter  Google Scholar 

  34. Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J (2006) Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38(5):1008–1014

    Article  CAS  Google Scholar 

  35. Welc M, Ravnskov S, Kieliszewska-Rokicka B, Larsen J (2010) Suppression of other soil microorganisms by mycelium of arbuscular mycorrhizal fungi in root-free soil. Soil Biol Biochem 42:1534–1540. https://doi.org/10.1016/j.soilbio.2010.05.024

    Article  CAS  Google Scholar 

  36. Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas. Physiology and function. Springer, Dordrecht, pp 239–262

    Chapter  Google Scholar 

  37. Verbruggen E, Van Der HEIJDENMG, Weedon JT, Kowalchuk GA, Röling WF (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21(10):2341–2353

    Article  PubMed  Google Scholar 

  38. Hamel C, Plenchette C (2017) Implications of past, current, and future agricultural practices for mycorrhiza-mediated nutrient flux. In: Johnson NC, Gehring C, Jansa J (eds) Mycorrhizal mediation of soil. Elsevier, Amsterdam, pp 175–186

    Chapter  Google Scholar 

  39. Bhandari G (2014) An overview of agrochemicals and their effects on environment in Nepal. Appl Ecol Environ Sci 2(2):66–73

    Google Scholar 

  40. Kumari A & Sundari SK (2022) In vitro and in vivo evidence for the mitigation of monocrotophos toxicity using native isolate of Trichoderma harzianum (In Press, Biologia journal, Springer)

    Google Scholar 

  41. Fasusi OA, Cruz C, Babalola OO (2021) Agricultural sustainability: microbial biofertilizers in rhizosphere management. Agriculture 11(2):163

    Article  CAS  Google Scholar 

  42. Abdel-Kareem MM, Zohri AN, Nasr SA (2021) Novel marine yeast strains as plant growth-promoting agents improve defense in wheat (Triticum aestivum) against fusarium oxysporum. J Plant Dis Prot 128(4):973–988

    Article  CAS  Google Scholar 

  43. Murali M, Naziya B, Ansari MA, Alomary MN, AlYahya S, Almatroudi A, Thriveni MC, Gowtham HG, Singh SB, Aiyaz M, Kalegowda N (2021) Bioprospecting of rhizosphere-resident fungi: their role and importance in sustainable agriculture. J Fungi 7(4):314

    Article  CAS  Google Scholar 

  44. Omotayo OP, Babalola OO (2021) Resident rhizosphere microbiome’s ecological dynamics and conservation: towards achieving the envisioned sustainable development goals, a review. Int Soil Water Conserv Res 9(1):127–142

    Article  Google Scholar 

  45. Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  46. Liermann LJ, Hausrath EM, Anbar AD, Brantley SL (2007) Assimilatory and dissimilatory processes of microorganisms affecting metals in the environment. J Anal At Spectrom 22(8):867–877

    Article  CAS  Google Scholar 

  47. Fenice M (2021) The nitrogen cycle: an overview. Nitrogen Cycle: Ecology, Biotechnological Applications and Environmental Impacts 22(1):1–21

    Google Scholar 

  48. Akhtar M, Sarwar N, Ashraf A, Ejaz A, Ali S, Rizwan M (2021) Beneficial role of Azolla sp. in paddy soils and their use as bioremediators in polluted aqueous environments: implications and future perspectives. Arch Agron Soil Sci 67(9):1242–1255

    Article  CAS  Google Scholar 

  49. Gough EC, Owen KJ, Zwart RS, Thompson JP (2021) Arbuscular mycorrhizal fungi acted synergistically with Bradyrhizobium sp. to improve nodulation, nitrogen fixation, plant growth and seed yield of mung bean (Vigna radiata) but increased the population density of the root-lesion nematode Pratylenchus thornei. Plant Soil 465(1):431–452

    Article  CAS  Google Scholar 

  50. Ingraffia R, Amato G, Frenda AS, Giambalvo D (2019) Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLoS One 14(3):e0213672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang HW, Ma CY, Xu FJ, Lu F, Zhang W, Dai CC (2021) Root endophyte-enhanced peanut-rhizobia interaction is associated with regulation of root exudates. Microbiol Res 250:126765

    Article  CAS  PubMed  Google Scholar 

  52. Rawat P, Das S, Shankhdhar D, Shankhdhar SC (2021) Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr 21(1):49–68

    Article  CAS  Google Scholar 

  53. Emami-Karvani Z & Chitsaz-Esfahani Z (2021) Phosphorus solubilization: mechanisms, recent advancement and future challenge. In: Soil microbiomes for sustainable agriculture. Springer, Cham, pp. 85–131

    Google Scholar 

  54. Wang J, Zhao YG, Maqbool F (2021) Capability of penicillium oxalicum y2 to release phosphate from different insoluble phosphorus sources and soil. Folia Microbiol 66(1):69–77

    Article  CAS  Google Scholar 

  55. Pandey D, Kehri HK, Zoomi I, Singh U, Chaudhri KL & Akhtar O (2020). Potassium solubilizing microbes: diversity, ecological significances and biotechnological applications. In Plant Microbiomes Sust Agr, Springer, Cham, pp. 263–286

    Google Scholar 

  56. Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, Yaseen M, Meena HN (2019) Perspectives of potassium solubilizing microbes in sustainable food production system: a review. Appl Soil Ecol 133:146–159

    Article  Google Scholar 

  57. Pathak A, Kothari R, Vinoba M, Habibi, Tyagi VV (2021) Fungal bioleaching of metals from refinery spent catalysts: a critical review of current research, challenges, and future directions. J Environ Manag 280:111789

    Article  CAS  Google Scholar 

  58. Muthuraja R, Muthukumar T (2021) Isolation and characterization of potassium solubilizing aspergillus species isolated from saxum habitats and their effect on maize growth in different soil types. Geomicrobiol J 38:672–685

    Article  Google Scholar 

  59. Zenda T, Liu S, Dong A, Duan H (2021) Revisiting Sulphur—the once neglected nutrient: its roles in plant growth, metabolism, stress tolerance and crop production. Agriculture 11(7):626

    Article  CAS  Google Scholar 

  60. Kawa D (2021) Outsourcing transport: sulfate delivery by an endophytic fungus to maize, pp. 1095-1096

    Google Scholar 

  61. Narayan OP, Kumar P, Yadav B, Dua M, Johri AK (2022) Sulfur nutrition and its role in plant growth and development. Plant Signal Behav:2030082

    Google Scholar 

  62. Linder T (2018) Assimilation of alternative sulfur sources in fungi. World J Microbiol Biotechnol 34(4):1–7

    Article  CAS  Google Scholar 

  63. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pecoraro L, Wang X, Shah D, Song X, Kumar V, Shakoor A, Rani R (2021) Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J Fungi 8(1):21

    Article  Google Scholar 

  65. Manoharan S, Ramalakshmi OI & Ramasamy S (2021). Fungal siderophores: prospects and applications. In Fungal Siderophores Springer, Cham, pp. 141–156

    Google Scholar 

  66. Haas H (2014) Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep 31(10):1266–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rütting T, Boeckx P, Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8(7):1779–1791

    Article  Google Scholar 

  68. Coyne MS, Lal R, Stewart BA (2018) Denitrification in soil. Soil Nitrogen Uses and Environmental Impacts 1:95–139

    Article  Google Scholar 

  69. Higgins SA, Schadt CW, Matheny PB, Löffler FE (2018) Phylogenomics reveal the dynamic evolution of fungal nitric oxide reductases and their relationship to secondary metabolism. Genome Boil Evol 10(9):2474–2489

    Article  CAS  Google Scholar 

  70. Ruiz-Herrera J, Starkey RL (1969) Dissimilation of methionine by fungi. J Bacteriol 99(2):544–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Raut RR, Harale P, Kurhe A (2020) Studies on soil quality parameters in relations to cropping patterns, micronutrients and pH from Goagalgaon area in Ahmednagar District of Maharashtra. India Int J Multidiscip Curr Res 6:210–219

    Google Scholar 

  72. Ashraf MA, Maah MJ, Yusoff I (2014) Soil contamination, risk assessment and remediation. Environ Risk Assess Soil Contam 25:3–56

    Google Scholar 

  73. Ahmad I, Imran M, Hussain MB & Hussain S (2017) Remediation of organic and inorganic pollutants from soil: the role of plant bacteria partnership. Chemical Pollution Control with Microorganisms 197–243

    Google Scholar 

  74. Burgess L (2013) The effects of organic pollutants in soil on human health. In EGU General Assembly Conference Abstracts, pp. 979

    Google Scholar 

  75. Sundari SK, Prakash A, Yadav P, Kumari A (2019) Plant growth-promoting microbes as front-runners for on-site remediation of organophosphate pesticide residues in agriculture soils. In: Arora N, Kumar N (eds) Phyto and Rhizo remediation. Microorganisms for sustainability, vol 9. Springer, Singapore, pp 249–285

    Chapter  Google Scholar 

  76. Singh G, Dwivedi SK, Mishra J (2020) Role of fungal enzymes in the removal of azo dyes. In Microbial enzymes: roles and applications in industries. Springer, Singapore, pp 231–257

    Google Scholar 

  77. Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shi Y, Yang Z, Xing L, Zhang X, Li X, Zhang D (2021) Recent advances in the biodegradation of azo dyes. World J Microbiol Biotechnol 37(8):1–18

    Article  Google Scholar 

  79. Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegrad Life Sci:251–287

    Google Scholar 

  80. Huang Y, Xiao L, Li F, Xiao M, Lin D, Long X, Wu Z (2018) Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules 23(9):2313

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hu K (2021) Developing and scaling up a trickle bed reactor for degrading pesticides from agricultural wastewater by fungi (Doctoral dissertation, Universitat Autònoma de Barcelona)

    Google Scholar 

  82. Henn C, Monteiro DA, Boscolo M, Da Silva R, Gomes E (2020) Biodegradation of atrazine and ligninolytic enzyme production by basidiomycete strains. BMC Microbiol 20(1):1–12

    Article  Google Scholar 

  83. Mohanan N, Montazer Z, Sharma PK, Levin DB (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:580709

    Article  PubMed  PubMed Central  Google Scholar 

  84. Saravanan A, Kumar PS, Vo DV, Jeevanantham S, Karishma S, Yaashikaa PR (2021) A review on catalytic-enzyme degradation of toxic environmental pollutants: microbial enzymes. J Hazard Mater 419:126451

    Article  CAS  PubMed  Google Scholar 

  85. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351(6278):1196–1199

    Article  CAS  PubMed  Google Scholar 

  86. Pan L, Fang G, Wang Y, Wang L, Su B, Li D, Xiang B (2018) Potentially toxic element pollution levels and risk assessment of soils and sediments in the upstream river, Miyun reservoir, China. Intel J Environ Res Pub Health 15(11):2364

    Article  CAS  Google Scholar 

  87. Gogoi NM, Baroowa B, Gogoi N (2021) Ecological tools for remediation of soil pollutants. In Bioremediation science from theory to practice. CRC Press, pp 57–78

    Book  Google Scholar 

  88. Verma A (2021) Bioremediation techniques for soil pollution: an introduction in P. In: Mendes KF, de Sousa RN, Mielke KC (eds) Biodegradation Technology of Organic and Inorganic Pollutants. IntechOpen, London. https://doi.org/10.5772/intechopen.99028

    Chapter  Google Scholar 

  89. Kumar V, Dwivedi SK (2021) Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. Environ Sci Pollut Res 28(9):10375–10412

    Article  CAS  Google Scholar 

  90. Khan I, Aftab M, Shakir S, Ali M, Qayyum S, Rehman MU, Haleem KS, Touseef I (2019) Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environ Monit Assess 191(9):1–1

    Article  Google Scholar 

  91. Derco J, Vrana B (2018) In: Derco J, Vrana B (eds) Biosorption. IntechOpen

    Chapter  Google Scholar 

  92. Kumari R, Singh A & Yadav AN (2021) Fungal enzymes: degradation and detoxification of organic and inorganic pollutants. In Recent trends in mycological research. Springer, Cham, pp. 99–125

    Google Scholar 

  93. Singh NS, Sharma R, Singh DK (2019) Identification of enzyme (s) capable of degrading endosulfan and endosulfan sulfate using in silico techniques. Enzym Microb Technol 124:32–40

    Article  CAS  Google Scholar 

  94. Da Silva NA, Birolli WG, Seleghim MH, Porto AL (2013) Biodegradation of the organophosphate pesticide Profenofos by marine fungi. Appl Bioremed Active Passive Approc 2:149–180

    Google Scholar 

  95. Williams MM II, Boydston RA, Peachey RE, Robinson D (2011) Performance consistency of reduced atrazine use in sweet corn. Field Crops Res 121(1):96–104

    Article  Google Scholar 

  96. Sakaki T, Yamamoto K, Ikushiro S (2013) Possibility of application of cytochrome P450 to bioremediation of dioxins. Biotechnol Appl Biochem 60(1):65–70

    Article  CAS  PubMed  Google Scholar 

  97. Čvančarová M, Křesinová Z, Filipová A, Covino S, Cajthaml T (2012) Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere 11:1317–1323

    Article  Google Scholar 

  98. Rosales E, Pazos M, Ángeles Sanromán M (2013) Feasibility of solid-state fermentation using spent fungi-substrate in the biodegradation of PAHs. Clean Soil Air Water 41:610–615

    Article  CAS  Google Scholar 

  99. Pazarlioglu NK, Akkaya A, Akdogan HA, Gungor B (2010) Biodegradation of direct blue 15 by free and immobilized Trametes versicolor. Water Environ Res 7:579–585

    Article  Google Scholar 

  100. Couto SR, Rosales E, Sanromán MA (2006) Decolourization of synthetic dyes by Trametes hirsuta in expanded-bed reactors. Chemosphere 62(9):1558–1563

    Article  PubMed  Google Scholar 

  101. Pandi A, Kuppuswami GM, Ramudu KN, Palanivel SA (2019) Sustainable approach for degradation of leather dyes by a new fungal laccase. J Clean Prod 211:590–597

    Article  CAS  Google Scholar 

  102. Bankole PO, Adekunle AA, Obidi OF, Chandanshive VV, Govindwar SP (2018) Biodegradation and detoxification of scarlet RR dye by a newly isolated filamentous fungus, Peyronellaea prosopidis. Sustain Environ Res 28(5):214–222

    Article  CAS  Google Scholar 

  103. He XL, Song C, Li YY, Wang N, Xu L, Han X, Wei DS (2018) Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotoxicol Environ Saf 150:232–239

    Article  CAS  PubMed  Google Scholar 

  104. Chakraborty S, Mukherjee A, Das TK (2013) Biochemical characterization of a lead-tolerant strain of Aspergillus foetidus: an implication of bioremediation of lead from liquid media. Int Biodeterior Biodegradation 84:134–142

    Article  CAS  Google Scholar 

  105. Muneer B, JIqbal M, Shakoori FR, Shakoori AR (2013). Tolerance and biosorption of mercury by microbial consortia: potential use in bioremediation of wastewater. Pak J Zool 45: 247–254

    Google Scholar 

  106. Parvathi K, Nagendran R (2007) Biosorption of chromium from effluent generated in chrome-electroplating unit using Saccharomyces cerevisiae. Sep Sci Technol 42(3):625–638

    Article  CAS  Google Scholar 

  107. Taştan BE, Ertuğrul S, Dönmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101(3):870–876

    Article  PubMed  Google Scholar 

  108. Mitra A, Roy D, Roy P, Bor AM, Sarkar Mitra AK (2014) Sustainability of Aspergillus spp. in metal enriched substrate aiming towards increasing bioremediation potential. World J Pharm Pharm Sci 3:864–878

    Google Scholar 

  109. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77(17):6076–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brunner I, Fischer M, Rüthi J, Stierli B, Frey B (2018) Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One 13(8):e0202047

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ojha N, Pradhan N, Singh S, Barla A, Shrivastava A, Khatua P, Rai V, Bose S (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7(1):1–3

    Article  CAS  Google Scholar 

  112. Jung HW, Yang MK, Su RC (2018) Purification, characterization, and gene cloning of an aspergillus fumigatus polyhydroxybutyrate depolymerase used for degradation of polyhydroxybutyrate, polyethylene succinate, and polybutylene succinate. Polym Degrad Stab 154:186–194

    Article  CAS  Google Scholar 

  113. Zuo LZ, Li HX, Lin L, Sun YX, Diao ZH, Liu S, Zhang ZY, Xu XR (2019) Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics. Chemosphere 215:25–32

    Article  CAS  PubMed  Google Scholar 

  114. Kaushal J, Khatri M, Arya SK (2021) Recent insight into enzymatic degradation of plastics prevalent in the environment: a mini-review. Clean Eng Technol 2:100083

    Article  Google Scholar 

  115. Hu X, Su T, Li P, Wang Z (2018) Blending modification of PBS/PLA and its enzymatic degradation. Polym Bull 75(2):533–546

    Article  CAS  Google Scholar 

  116. Hegyesi N, Zhang Y, Kohari A, Polyák P, Sui X, Pukanszky B (2019) Enzymatic degradation of PLA/cellulose nanocrystal composites. Ind Crop Prod 141:111799

    Article  CAS  Google Scholar 

  117. Guhra T, Stolze K, Totsche KU (2022) Pathways of biogenically excreted organic matter into soil aggregates. Soil Biol Biochem 164:108483

    Article  CAS  Google Scholar 

  118. Hannula SE, Morriën E (2022) Will fungi solve the carbon dilemma? Geoderma 413:115767

    Article  Google Scholar 

  119. Witzgall K, Vidal A, Schubert DI, Hoschen C, Schweizer SA, Buegger F, Pouteau V, Chenu C, Mueller CW (2021) Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat Commun 12(1):1–10

    Article  Google Scholar 

  120. Frąc M (2015) Occurrence, detection, and molecular and metabolic characterization of heat-resistant fungi in soils and plants and their risk to human health. Adv Agron 132:161–204

    Article  Google Scholar 

  121. Chanclud E, Morel JB (2016) Plant hormones: a fungal point of view. Mol Plant Pathol 17(8):1289–1297

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ellouze W, Esmaeili Taheri A, Bainard LD, Yang C, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel C. (2014) Soil fungal resources in annual cropping systems and their potential for management. BioMed. Res. Intel. pp. 2014

    Google Scholar 

  123. Senthil-Nathan S (2015) A review of biopesticides and their mode of action against insect pests. Environment Sustain:49–63

    Google Scholar 

  124. Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosyst 5(1):21–47

    Article  Google Scholar 

  125. Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113

    Article  CAS  PubMed  Google Scholar 

  126. Rani A, Saini KC, Bast F, Mehariya S, Bhatia SK, Lavecchia R, Zuorro A (2021) Microorganisms: a potential source of bioactive molecules for antioxidant applications. Molecules 26(4):1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci 6:573

    Article  PubMed  PubMed Central  Google Scholar 

  128. Tijjani A, Bashir K, Mohammed I, Muhammad A, Gambo A, Musa H (2016) Biopesticides for pests control: a review. J Biopest Agric 3(1):6–13

    Google Scholar 

  129. Saxena J, Chandra S, Nain L (2013) Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. J Soil Sci Plant Nutr 13(2):511–525

    Google Scholar 

  130. Woo S, Fogliano V, Scala F, Lorito M (2002) Synergism between fungal enzymes and bacterial antibiotics may enhance biocontrol. Antonie Leeuwenhoek 81(1):353–356

    Article  CAS  PubMed  Google Scholar 

  131. Barea JM, Azcon R, Azcon-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In Microorganisms in soils: roles in genesis and functions. Springer, Berlin, Heidelberg, pp. 195–212

    Google Scholar 

  132. Ansari MA, Butt TM (2012) Susceptibility of different developmental stages of large pine weevil Hylobius abietis (Coleoptera: Curculionidae) to entomopathogenic fungi and effect of fungal infection to adult weevils by formulation and application methods. J Invertebr Pathol 111(1):33–40

    Article  PubMed  Google Scholar 

  133. Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8(1):71–126

    Article  Google Scholar 

  134. Bejarano A, Puopolo G (2020) Bioformulation of microbial biocontrol agents for a sustainable agriculture. In: CalA D, Melgarejo P, Magan N (eds) How research can stimulate the development of commercial biological control against plant diseases. Springer, Cham, pp 275–293

    Chapter  Google Scholar 

  135. Vassilev N, Vassileva M, Martos V, Garcia del Moral LF, Kowalska J, Tylkowski B, Malusá E (2020) Formulation of microbial inoculants by encapsulation in natural polysaccharides: focus on beneficial properties of carrier additives and derivatives. Front Plant Sci 11:270

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bashan Y, de-Bashan LE, Prabhu SR (2016) Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In: Singh HB, Sarma BK, Keswani C (eds) Agriculturally important microorganisms - commercialization and regulatory requirements in Asia. Springer, Berlin, pp 15–46

    Google Scholar 

  137. Mishra J & Arora NK (2016) Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In Bioformulations: for sustainable agriculture, Springer, New Delhi, pp. 3–33

    Google Scholar 

  138. Morton JB, Benedito VA, Panaccione DG, Jenks MA (2014) Potential for industrial application of microbes in symbioses that influence plant productivity and sustainability in agricultural, natural, or restored ecosystems. Ind Biotechnol 10(5):347–353

    Article  CAS  Google Scholar 

  139. Pandya U & Saraf M (2014) In vitro evaluation of PGPR strains for their biocontrol potential against fungal pathogens. In Plant Microbes Symbiosis: Applied Facets. pp. 179–192

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of our institute (JIIT), for encouraging our academic and scientific endeavors. Our sincere thanks are also due to editors of this book for providing an opportunity to contribute this chapter. We would like to also thank Mr. Navendra Unniyal for collecting the data used in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Sundari Sattiraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sattiraju, K.S., Kumari, A., Chaudhary, P. (2023). Fungal Ministrations in Soil Detoxification, Building, and Health Restoration. In: Satyanarayana, T., Deshmukh, S.K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_3

Download citation

Publish with us

Policies and ethics