Skip to main content

Innovative Technologies for Intrauterine Monitoring of Predictive Markers of Vascular and Neurological Well-Being

  • Chapter
  • First Online:
Innovative Technologies and Signal Processing in Perinatal Medicine

Abstract

After Barker’s hypothesis, an increasing number of subsequent epidemiological studies confirmed the link among low birth weight (LBW), rapid weight gain in the first years of life, obesity in adolescent period, and increased risk of cardiovascular disease (CVD), stroke, glucose intolerance, and type II diabetes in adult life. Studies conducted in fetuses, neonates, children, and adolescents born intrauterine growth restriction (IUGR) point to the possibility that endothelial dysfunction, evaluated by aorta intima-media thickness (aIMT), carotid IMT (cIMT), carotid stiffness, central pulse wave velocity, brachial artery flow-mediated dilation, endothelium-dependent microvascular vasodilatation, echocardiographic evaluation, and arterial blood pressure, may be an inborn characteristic of subjects with LBW that persists from childhood to adult life.

IUGR is a very complex and multifactorial disorder with long-term persistence of CVD older in patients who suffered IUGR early in life. Innovative technological research in the areas of cardiovascular disease allows to deepen the study of cardiac function through wall study. The prenatal and postnatal vascular modifications showed in several human and animal studies by blood pressure and cardiac modifications in IUGR, which appear small, seem to be clinically relevant and/or a major contributor to Barker’s hypothesis association of birth weight with ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gordijn, S.J., et al.: Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet. Gynecol. 48, 333–339 (2016)

    Article  Google Scholar 

  2. Lausman, A., Kingdom, J., Gagnon, R., Basso, M., Bos, H., Crane, J., Davies, G., Delisle, M.F., Hudon, L., Menticoglou, S., Mundle, W., Ouellet, A., Pressey, T., Pylypjuk, C., Roggensack, A., Sanderson, F., Maternal Fetal Medicine Committee: Intrauterine growth restriction: screening, diagnosis, and management. J. Obstet. Gynaecol. Can. 35, 741–757 (2013)

    Article  Google Scholar 

  3. American College of Obstetricians and Gynecologists: ACOG Practice bulletin no. 134: fetal growth restriction. Obstet. Gynecol. 121, 1122–1133 (2013)

    Article  Google Scholar 

  4. Barker, D.J., Osmond, C., Golding, J., Kuh, D., Wadsworth, M.E.: Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 298, 564–567 (1989)

    Article  Google Scholar 

  5. Barker, D.J., Winter, P.D., Osmond, C., Margetts, B., Simmonds, S.J.: Weight in infancy and death from ischaemic heart disease. Lancet. 2, 577–580 (1989)

    Article  Google Scholar 

  6. Mellanby, E.: Nutrition and child-bearing. Lancet. 222(5751), 1131–1137 (1933)

    Article  Google Scholar 

  7. Harding, J.E.: The nutritional basis of the fetal origins of adult disease. Int. J. Epidemiol. 30, 15–23 (2001)

    Article  Google Scholar 

  8. Nobili, V., Marcellini, M., Marchesini, G., Vanni, E., Manco, M., Villani, A., et al.: Intrauterine growth retardation, insulin resistance, and non-alcoholic fatty liver disease in children. Diabetes Care. 30, 2638–2640 (2007)

    Article  Google Scholar 

  9. Barker, D.J., Eriksson, J.G., Forsen, T., Osmond, C.: Fetal origins of adult disease: strength of effects and biological basis. Int. J. Epidemiol. 31, 1235e9 (2002)

    Article  Google Scholar 

  10. Wilmot, E., Edwardson, C., Achana, F., et al.: Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 55, 2895–2905 (2012)

    Article  Google Scholar 

  11. Kavey, R.E., Allada, V., Daniels, S.R., et al.: Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation. 114, 2710–2738 (2006)

    Article  Google Scholar 

  12. Martin, F.A., Murphy, R.P., Cummins, P.M.: Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am. J. Physiol. Heart Circ. Physiol. 304, H1585–H1597 (2013)

    Article  Google Scholar 

  13. Flavahan, N.A., Vanhoutte, P.M.: Endothelial cell signaling and endothelial dysfunction. Am. J. Hypertens. 8, 28S–41S (1995)

    Article  Google Scholar 

  14. Griendling, K.K., Fitz Gerald, G.A.: Oxidative stress and cardiovascular injury. Part I. Basic mechanisms and in vivo monitoring of ROS. Circulation. 108, 1912–1916 (2003)

    Article  Google Scholar 

  15. Mover and Shakers in the Vascular Treed: Hemodynamic and Biomechanical Factors in Blood Vessel Pathology, Mar 11–12, 1999, in Bethesda

    Google Scholar 

  16. Nuyt, A.M.: Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin. Sci. Lond. 114, 1–17 (2008)

    Article  Google Scholar 

  17. Langley-Evans, S.C., Phillips, G.J., Benediktsson, R., Gardner, D.S., Edwards, C.R., Jackson, A.A., Seckl, J.R.: Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta. 173, 169–172 (1996)

    Article  Google Scholar 

  18. Berliner, J.A., Navab, M., Fogelman, A.M., et al.: Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation. 91, 2488–2496 (1995)

    Article  Google Scholar 

  19. Hattersley Andrew, T., Tooke, J.E.: The fetal insulin hypothesis: an alternative explanation of the association of low birth weight with diabetes and vascular disease. Lancet. 353, 1789–1792 (1999)

    Article  Google Scholar 

  20. McGill Jr., H.C., McMahan, C.A., Herderick, E.E., Malcom, G.T., Tracy, R.E., Strong, J.P.: Origin of atherosclerosis in childhood and adolescence. Am. J. Clin. Nutr. 72, 1307S–1315S (2000)

    Article  Google Scholar 

  21. Lorenz, M.W., Markus, H.S., Bots, M.L., Rosvall, M., Sitzer, M.: Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 115, 459–467 (2007)

    Article  Google Scholar 

  22. Skilton, M.R., Evans, N., Griffiths, K.A., Harmer, J.A., Celermajer, D.S.: Aortic wall thickness in newborns with intrauterine growth restriction. Lancet. 365, 1484–1486 (2005)

    Article  Google Scholar 

  23. Koklu, E., Ozturk, M.A., Gunes, T., Akcakus, M., Kurtoglu, S.: Is increased intima-media thickness associated with preatherosclerotic changes in intrauterine growth restricted newborns? Acta. Paediatr. 96, 1858 (2007)

    Article  Google Scholar 

  24. Koklu, E., Kurtoglu, S., Akcakus, M., Yikilmaz, A., Coskun, A., Gunes, T.: Intima-media thickness of the abdominal aorta of neonates with different gestational ages. J. Clin. Ultrasound. 35, 491–497 (2007)

    Article  Google Scholar 

  25. Hecher, K., Campbell, S., Doyle, P., et al.: Assessment of fetal compromise by Doppler ultrasound investigation of the fetal circulation. Arterial, intracardiac, and venous blood flow velocity studies. Circulation. 91, 129–138 (1995)

    Article  Google Scholar 

  26. Cheng, J.K., et al.: Extracellular matrix and the mechanics of the large artery development. Biomech. Model. Mechanobiol. 11, 1169–1186 (2012)

    Article  Google Scholar 

  27. Wagenseil, J.E., Mecham, R.P.: Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89, 957–989 (2009)

    Article  Google Scholar 

  28. Bendeck, M.P., Keeley, F.W., Langille, B.L.: Perinatal accumulation of arterial wall constituents: relation to hemodynamic changes at birth. Am. J. Phys. 267, H2268–H2279 (1994)

    Google Scholar 

  29. Visentin, S., Londero, A.P., et al.: Fetal abdominal aorta: doppler and structural evaluation of endothelial function in intrauterine growth restriction and controls. Ultraschall Med. 40(1), 55–63 (2019)

    Article  Google Scholar 

  30. Sanghavi, M., Rutherford, J.D.: Cardiovascular physiology of pregnancy. Circulation. 130(12), 1003–1008 (2014)

    Article  Google Scholar 

  31. Liu, S., Elkayam, U., Naqvi, T.Z.: Echocardiography in pregnancy: part 1. Curr. Cardiol. Rep. 18(9), 92 (2016)

    Article  Google Scholar 

  32. Hoit, B.D.: Strain and strain rate echocardiography and coronary artery disease. Circ. Cardiovasc. Imaging. 4(2), 179–190 (2011)

    Article  Google Scholar 

  33. Blessberger, H., Binder, T.: Two dimensional speckle tracking echocardiography: clinical applications. Heart. 96(24), 2032–2040 (2010)

    Article  Google Scholar 

  34. Teske, A.J., De Boeck, B.W.L., Melman, P.G., Sieswerda, G.T., Doevendans, P.A., Cramer, M.J.M.: Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking. Cardiovasc. Ultras. 5, 27 (2007)

    Google Scholar 

  35. Voigt, J.U., Pedrizzetti, G., Lysyansky, P., et al.: Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging. 16(1), 1–11 (2015)

    Article  Google Scholar 

  36. Walker, J.J.: Pre-eclampsia. Lancet. 356, 1260–1265 (2000)

    Article  Google Scholar 

  37. Bauer, T.W., Moore, G.W., Hutchins, G.M.: Morphologic evidence for coronary artery spasm in eclampsia. Circulation. 65(2), 255–259 (1982)

    Article  Google Scholar 

  38. Valensise, H., Lo Presti, D., Gagliardi, G., et al.: Persistent maternal cardiac dysfunction after preeclampsia identifies patients at risk for recurrent preeclampsia. Hypertension. 67(4), 748–753 (2016)

    Article  Google Scholar 

  39. Orabona, R., Vizzardi, E., Sciatti, E., et al.: Insights into cardio-vascular alterations after pre-eclampsia: a 2D strain echocardiographic study. Eur. J. Heart Fail. 18, 391 (2016)

    Google Scholar 

  40. Hamad, R.R., et al.: Assessment of left ventricular structure and function in preeclampsia by echocardiography and cardiovascular biomarkers. J. Hypertens. 27(11), 2257–2264 (2009)

    Article  Google Scholar 

  41. Bamfo, J.E.A.K., et al.: Maternal cardiac function in normotensive and pre-eclamptic intrauterine growth restriction. Ultrasound Obstet. Gynecol. 32(5), 682–686 (2008)

    Article  Google Scholar 

  42. Fayers, S., Moodley, J., Naidoo, D.P.: Cardiovascular haemodynamics in pre-eclampsia using brain natriuretic peptide and tissue Doppler studies. Cardiovasc. J. Afr. 24(4), 130–136 (2013)

    Article  Google Scholar 

  43. Melchiorre, K., Sutherland, G.R., Baltabaeva, A., Liberati, M., Thilaganathan, B.: Maternal cardiac dysfunction and remodeling in women with preeclampsia at term. Hypertension. 57(1), 85–93 (2011)

    Article  Google Scholar 

  44. Cong, J., Fan, T., et al.: Maternal cardiac remodeling and dysfunction in preeclampsia: a three-dimensional speckle-tracking echocardiography study. Int. J. Cardiovasc. Imaging. 31(7), 1361–1368 (2015)

    Article  Google Scholar 

  45. Unterscheider, J., Daly, S., Geary, M.P., et al.: Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am. J. Obstet. Gynecol. 208(4), 290.e1–290.e6 (2013)

    Article  Google Scholar 

  46. Vasapollo, B., Valensise, H., Novelli, G.P., et al.: Abnormal maternal cardiac function and morphology in pregnancies complicated by intrauterine fetal growth restriction. Ultrasound Obstet. Gynecol. 20(5), 452–457 (2002)

    Article  Google Scholar 

  47. Bamfo, J.E.A.K., Kametas, N.A., Turan, O., Khaw, A., Nicolaides, K.H.: Maternal cardiac function in fetal growth restriction. BJOG Int. J. Obstet. Gynaecol. 113(7), 784–791 (2006)

    Article  Google Scholar 

  48. Melchiorre, K., Sutherland, G.R., Liberati, M., Thilaganathan, B.: Maternal cardiovascular impairment in pregnancies complicated by severe fetal growth restriction. Hypertension. 60(2), 437–443 (2012)

    Article  Google Scholar 

  49. Nagueh, S.F., Appleton, C.P., Gillebert, T.C., et al.: Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 22(2), 107–133 (2009)

    Article  Google Scholar 

  50. Krause, K., Möllers, M., Hammer, K., et al.: Quantification of mechanical dyssynchrony in growth restricted fetuses and normal controls using speckle tracking echocardiography (STE). J. Perinat. Med. 45(7), 821–827 (2017)

    Article  Google Scholar 

  51. Crispi, F., Figueras, F., Cruz-Lemini, M., et al.: Cardiovascular programming in children born small for gestational age and relationship with prenatal signs of severity. Am. J. Obstet. Gynecol. 207, 121.e1–121.e9 (2012)

    Article  Google Scholar 

  52. Cikes, M., Sutherland, G.R., Anderson, L.J., Bijnens, B.H.: The role of echocardiographic deformation imaging in hypertrophic myopathies. Nat. Rev. Cardiol. 7, 384–396 (2010)

    Article  Google Scholar 

  53. Barker, D.J.: The developmental origins of well-being. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 1359–1366 (2004)

    Article  Google Scholar 

  54. Cosmi, E., Visentin, S., Fanelli, T., Mautone, A.J., Zanardo, V.: Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obstet. Gynecol. 114, 1109–1114 (2009)

    Article  Google Scholar 

  55. Jarvisalo, M.J., Jartti, L., Nanto-Salonen, K., et al.: Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children. Circulation. 104, 2943–2947 (2001)

    Article  Google Scholar 

  56. Comas, M., Crispi, F., Cruz-Martinez, R., Figueras, F., Gratacos, E.: Tissue Doppler echocardiographic markers of cardiac dysfunction in small-for-gestational age fetuses. Am. J. Obstet. Gynecol. 205, 57.e1–57.e6 (2011)

    Article  Google Scholar 

  57. Nilsson, P.M., Ostergren, P.O., Nyberg, P., Söderström, M., Allebeck, P.: Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149,378 Swedish boys. J. Hypertens. 15, 1627–1631 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Visentin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Visentin, S., Palermo, C., Cosmi, E. (2021). Innovative Technologies for Intrauterine Monitoring of Predictive Markers of Vascular and Neurological Well-Being. In: Pani, D., Rabotti, C., Signorini, M.G., Burattini, L. (eds) Innovative Technologies and Signal Processing in Perinatal Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-54403-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54403-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54402-7

  • Online ISBN: 978-3-030-54403-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics