Skip to main content

Future and Other Robotic Platforms

  • Chapter
  • First Online:
Robotic Surgery

Abstract

Robotic surgery has arisen in an effort to overcome the innate limitations to laparoscopy while maintaining the benefits of a minimally invasive surgical approach. Despite initial lack of widespread acceptance given, concerns for increased cost compared to laparoscopy, the robotic platform can now be found across all domains of surgery, including general, colorectal, cardiac, thoracic, head and neck, gynecologic, and urologic surgery. As minimally invasive approaches begin to demonstrate equivalent outcomes as open and laparoscopic procedures, enthusiasm for robotics continues to gain momentum. As enthusiasm grows, so does innovation, improvement in current systems, and development of new robotic platforms. Once dominated by a single system, the field of robotics is burgeoning as new robotic systems continue emerge to compete with the industry. This chapter reviews current surgical systems and highlights new and upcoming technology within the field of robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. George EI, et al. Origins of robotic surgery: from skepticism to standard of care. J Soc Laparoendoscop Surg. 2018;22(4):e2018.00039. https://doi.org/10.4293/JSLS.2018.00039.

    Article  Google Scholar 

  2. Rao PP. Robotic surgery: new robots and finally some real competition! World J Urol. 2018;36:537–41.

    Article  PubMed  Google Scholar 

  3. Rassweiler JJ, et al. Future of robotic surgery in urology. BJU Int. 2017;120(6):822–41. https://doi.org/10.1111/bju.13851.

    Article  PubMed  Google Scholar 

  4. Cole AP, et al. The rise of robotic surgery in the new millennium. J Urol. 2017;197(2S):S213–5. https://doi.org/10.1016/j.jur0.2016.11.030.

    Article  PubMed  Google Scholar 

  5. Sudipta R, Evans C. Overview of robotic colorectal surgery: current and future practical developments. World J Gastrointest Surg. 2016;8(2):143–50.

    Article  Google Scholar 

  6. Peters BS, et al. Review of emerging surgical robotic technology. Surg Endosc. 2018;32:1636–55.

    Article  PubMed  Google Scholar 

  7. Kuhry E, et al. Long-term outcome of laparoscopic surgery for colorectal cancer: a cochrane systematic review of randomised controlled trials. Cancer Treat Rev. 2008;34:498–504. PMID: 18468803. https://doi.org/10.1016/j.ctrv.2008.03.011.

    Article  PubMed  Google Scholar 

  8. Buunen M, et al. Survival after laparoscopic surgery versus open surgery for colon cancer: long-term outcome of a randomised clinical trial. Lancet Oncol. 2009;10:44–52 . PMID: 19071061. https://doi.org/10.1016/S1470-2045(08)70310-3.

    Article  CAS  PubMed  Google Scholar 

  9. Fleshman J, et al. Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST study group trial. Ann Surg. 2007;246:655–62; discussion 662–664. PMID: 17893502. https://doi.org/10.1097/SLA.0b013e318155a762.

    Article  PubMed  Google Scholar 

  10. Morneau M, et al. Laparoscopic versus open surgery for the treatment of colorectal cancer: a literature review and recommendations from the Comité de l’évolution des pratiques en oncologie. Can J Surg. 2013;56:297–310 . PMID: 24067514. https://doi.org/10.1503/cjs.005512.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Di B, Li Y, et al. Laparoscopic versus open surgery for colon cancer: a meta-analysis of 5-year follow-up outcomes. Surg Oncol. 2013;22:e39–43 . PMID: 23643698. https://doi.org/10.1016/j.suronc.2013.03.002.

    Article  PubMed  Google Scholar 

  12. Kumar A, et al. Minimally invasive (endoscopic-computer assisted) surgery: technique and review. Ann Maxillofac Surg. 2016;6:159.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Desouza AL, et al. Total mesorectal excision for rectal cancer: the potential advantage of robotic assistance. Dis Colon Rectum. 2010;53:1611–7. https://doi.org/10.1007/DCR.0b013e3181f22f1f.

    Article  PubMed  Google Scholar 

  14. Xiong B, et al. Robotic versus laparoscopic total mesorectal excision for rectal cancer: a meta-analysis. J Surg Res. 2014;188:404–14. https://doi.org/10.1016/j.jss.2014.01.027.

    Article  PubMed  Google Scholar 

  15. Walker AS, Steele SR. The future of robotic instruments in colon and rectal surgery, vol. 27. Amsterdam: Elsevier; 2016. p. 144–9.

    Google Scholar 

  16. Oleynikov D. Robotic surgery. Surg Clin North Am. 2008;88:1121–30. https://doi.org/10.1016/j.suc.2008.05.012.

    Article  PubMed  Google Scholar 

  17. Tsui C, Klein R, Garabrant M. Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg Endosc. 2013;27:2253–7. https://doi.org/10.1007/s00464-013-2973-9.

    Article  PubMed  Google Scholar 

  18. Alli VV, et al. Nineteen-year trends in incidence and Indi- cations for laparoscopic cholecystectomy: the NY state experience. Surg Endosc. 2017;31:1651–8. https://doi.org/10.1007/s00464-016-5154-9.

    Article  PubMed  Google Scholar 

  19. Rodriguez-Sanjuan JC, et al. Laparoscopic and robot-assisted laparoscopic digestive surgery: present and future directions. World J Gastroenterol. 2016;22:1975–2004. https://doi.org/10.3748/wjg.v22.i6.1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Galvez D, et al. Technical considerations for the fully robotic pancreaticoduodenectomy. J Vis Surg. 2017;3:81. https://doi.org/10.21037/jovs.2017.05.08.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tekkis PP, Senagore AJ, Delaney CP. Conversion rates in laparoscopic colorectal surgery: a predictive model with, 1253 patients. Surg Endosc. 2005;19:47–54 . PMID: 15549630. https://doi.org/10.1007/s00464-004-8904-z.

    Article  CAS  PubMed  Google Scholar 

  22. Ortiz-Oshiro E, et al. Robotic assistance may reduce conversion to open in rectal carcinoma laparoscopic surgery: systematic review and meta-analysis. Int J Med Robot. 2012;8:360–70 . PMID: 22438060. https://doi.org/10.1002/rcs.1426.

    Article  PubMed  Google Scholar 

  23. AlAsari S, Min BS. Robotic colorectal surgery: a systematic review. ISRN Surg. 2012:1–12. https://doi.org/10.5402/2012/293894.

  24. Araujo SEA, Seid VE, Klajner S. Robotic surgery for rectal cancer: current immediate clinical and oncological outcomes. World J Gastroenterol. 2014;20:14359–70. https://doi.org/10.3748/wjg.v20.i39.14359.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mak TWC, Lee JFY, Futaba K, et al. Robotic surgery for rectal cancer: a systematic review of current practice. World J Gastrointest Oncol. 2014;6:184–93. https://doi.org/10.4251/wjgo.v6.i6.184.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hanly EJ, Talamini MA. Robotic abdominal surgery. Am J Surg. 2004;188:19–26.

    Article  Google Scholar 

  27. Herrell SD, Webster R, Simaan N. Future robotic platforms in urologic surgery: recent developments. Curr Opin Urol. 2014;24(1):118–26. https://doi.org/10.1097/MOU.0000000000000015.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Panteleimonitis S, et al. Precision in robotic rectal surgery using the da Vinci Si system and integrated table motion, a technical note. J Robot Surg. 2018;12:433–6.

    Article  PubMed  Google Scholar 

  29. Higgins RM, Frelich MJ, Bosler ME, Gould JC. Cost analysis of robotic versus laparoscopic general surgery procedures. Surg Endosc. 2017;31:185–92. https://doi.org/10.1007/s00464-016-4954-2.

    Article  PubMed  Google Scholar 

  30. TransEnterix Surgical, Inc. 2019. Transenterix.com.

  31. Fanfani F, et al. The new robotic TELELAP ALF-X in gynecological surgery: single-center experience. Surg Endosc. 2016;30:215–21.

    Article  PubMed  Google Scholar 

  32. Fanfani F, et al. Total laparoscopic (S-LPS) versus TELELAP ALF-X robotic-assisted hysterectomy: a case-control study. J Minim Invasive Gynecol. 2016;23:933–8.

    Article  PubMed  Google Scholar 

  33. Stark M, et al. A new telesurgical platform–preliminary clinical results. Minim Invasive Ther Allied Technol. 2015;24:31–6.

    Article  PubMed  Google Scholar 

  34. Kaok JH, et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol. 2014;66(6):1033–43.

    Article  Google Scholar 

  35. Kaouk JH, Sagalovich D, Garisto J. Robot-assisted transvesical partial prostatectomy using a purpose-built single-port robotic system. BJU Int. 2018;122(3):520–4.

    Article  PubMed  Google Scholar 

  36. Intuitive Surgical, Inc. Intuitive surgical announces innovative single port platform- the da Vinci SP surgical system. 2019.

    Google Scholar 

  37. Chan JYK, et al. Early results of a safety and feasibility clinical trial of a novel single-port flexible robot for transoral robotic surgery. Eur Arch Otorhinolaryngol. 2017;274(11):3993–6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tateya I, et al. Flexible next-generation robotic surgical system for transoral endoscopic hypopharyngectomy: a comparative preclinical study. Head Neck. 2018;40(1):16–23.

    Article  PubMed  Google Scholar 

  39. Chen MM, et al. Improved transoral dissection of the tongue base with a next-generation robotic surgical system. Laryngoscope. 2018;128(1):78–83.

    Article  PubMed  Google Scholar 

  40. Freehand v1.2. 2019. Freehandsurgeon.com.

  41. Rassweiler JJ, Teber D. Advances in laparoscopic surgery in urology. Nat Rev Urol. 2016;13:387–99. https://doi.org/10.1038/nrur01.2016.70.

    Article  PubMed  Google Scholar 

  42. Stolzenburg JU, et al. Comparison of the FreeHand(R) robotic camera holder with human assistants during endoscopic extraperitoneal radical prostatectomy. BJU Int. 2011;107:970–4. https://doi.org/10.1111/j.1464-410X.2010.09656.x.

    Article  PubMed  Google Scholar 

  43. Beasly RA. Medical robots: current systems and research directions. J Robot. 2012:1–14.

    Google Scholar 

  44. Tran H. Robotic single-port hernia surgery. JSLS. 2011;15:309–14. https://doi.org/10.4293/108680811X13125733356198.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sbaih M, et al. Rate of skill acquisition in the use of a robotic laparoscope holder (Free- Hand®). Minim Invasive Ther Allied Technol. 2016;25:196–202.

    Article  PubMed  Google Scholar 

  46. Titan Medical. 2019. Titanmedicalinc.com.

  47. Laskaris J, Regan K. Soft tissue robotics- the next generation. 2019. Available from: http://www.avrasu- rgical.com/images/____Soft_Tissue_Robotics_Report_Final.pdf.

  48. MiroSurge. 2019. https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-11674/#gallery/28728.

  49. Versius. 2019. https://cmrsurgical.com/versius/.

  50. Feussner H. Surgery 4.0. In: Thuemmler C, Bai C, editors. Health 4.0: how virtualization and big data are revolutionizing healthcare. Cham: Springer; 2017. p. 91–107.

    Chapter  Google Scholar 

  51. Armijo PR, et al. Growth in robotic-assisted procedures is from conversion of laparoscopic procedures and not from open surgeons’ conversion: a study of trends and costs. Surg Endosc. 2017; https://doi.org/10.1007/s00464-017-5908-z.

  52. McMurray J, et al. The importance of trust in the adoption and use of intelligent assistive technology by older adults to support aging in place: scoping review protocol. JMIR Res Protoc. 2017;6:e218. https://doi.org/10.2196/resprot.8772.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paull, J., Parascandola, S., Obias, V.J. (2021). Future and Other Robotic Platforms. In: Gharagozloo, F., Patel, V.R., Giulianotti, P.C., Poston, R., Gruessner, R., Meyer, M. (eds) Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-53594-0_144

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53594-0_144

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53593-3

  • Online ISBN: 978-3-030-53594-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics